Publications by authors named "Maija Raudsepp"

Carbon neutral or negative mining can potentially be achieved by integrating carbon mineralization processes into the mine design, operations, and closure plans. Brucite [Mg(OH)] is a highly reactive mineral present in some ultramafic mine tailings with the potential to be rapidly carbonated and can contain significant amounts of ferrous iron [Fe(II)] substituted for Mg; however, the influence of this substitution on carbon mineralization reaction products and efficiency has not been thoroughly constrained. To better assess the efficiency of carbon storage in brucite-bearing tailings, we performed carbonation experiments using synthetic Fe(II)-substituted brucite (0, 6, 23, and 44 mol % Fe) slurries in oxic and anoxic conditions with 10% CO.

View Article and Find Full Text PDF

Bioneutralization of pH by microbial fermentation of added carbon substrates is a promising new method for remediation of the 1.7 GT/yr of alkaline mining tailings produced globally. Here, we present the first study to systematically compare and optimize the efficacy of microbial inocula of varying diversities, structures, and provenance and organic carbon substrates of varying complexities on the rate and extent of pH bioneutralization in alkaline bauxite residue tailings.

View Article and Find Full Text PDF

Microorganisms in marine subsurface sediments substantially contribute to global biomass. Sediments warmer than 40°C account for roughly half the marine sediment volume, but the processes mediated by microbial populations in these hard-to-access environments are poorly understood. We investigated microbial life in up to 1.

View Article and Find Full Text PDF

Microbial community succession in tailings materials is poorly understood at present, and likely to be substantially different from similar processes in natural primary successional environments due to the unusual geochemical properties of tailings and the isolated design of tailings storage facilities. This is the first study to evaluate processes of primary succession in microbial communities colonizing unamended tailings, and compare the relative importance of stochastic (predominantly dust-borne dispersal) and deterministic (strong selection pressures from extreme geochemical properties) processes in governing community assembly rates and trajectories to those observed in natural environments. Dispersal-based recruitment required > 6 months to shift microbial community composition in unamended, field-weathered gold tailings; and in the absence of targeted inoculants, recruitment was dominated by salt- and alkali-tolerant species.

View Article and Find Full Text PDF