Colorimetric paper-based analytical devices (CPADs) are cost-efficient and high-throughput technologies that use readily available materials for point-of-need (PON) applications by leveraging color changes in response to target analytes. However, the complexity of samples can limit the precision and accuracy of CPAD applications. Therefore, CPADs have been combined with chemometric approaches to enhance analytical performance and provide simple solutions to complex systems.
View Article and Find Full Text PDFA quantitative method for acid-base titrations in paper-based devices (PADs) is described to analyze acetic acid in vinegar samples. In this work, two different types of PADs were developed: a device for individual spot testing and a microfluidic device. Digital colorimetry was used as the detection method, and the images were acquired using a smartphone and a homemade box with LED lights for controlled image acquisition.
View Article and Find Full Text PDFIn this study, multivariate statistical analyses were performed to develop water and sediment quality indexes, allowing us (i) to select with reliability the most appropriate chemical variables for the evaluation of river quality susceptibility; (ii) to weight the influence of each variable based on monitored data; (iii) to consider possible synergism or antagonism derived from the combined effect of several pollutants; and (iv) to express the quality as a deviation from selected site-specific reference conditions. For the establishment of these threshold/maximum values, combining two biological indicators related to denitrifying bacteria in sediments turned out to be applicable to ensure compliance with the European water quality standard. The joint implementation of water and sediment quality indexes assisted us in the rapid detection of the deleterious effect of different anthropogenic contamination sources, as well as the influence of hydrological regime seasonality on river quality.
View Article and Find Full Text PDFColor additives are used widely by the food industry to confer a desirable appearance. Some of the most used colorants (Tartrazine (E102), Sunset Yellow (E110), Red Allure (E129) and Blue Brilliant (E133)) were determined in this study using microemulsion electrokinetic capillary chromatography (MEEKC). Regression coefficients were greater than 0.
View Article and Find Full Text PDFA method based on digital image is described to quantify tartrazine (E102), yellow, and allura red (E129) colorants in food samples. HPLC is the habitual method of reference used for colorant separation and quantification, but it is expensive, time-consuming and it uses solvents, sometimes toxic. By a flatbed scanner, which can be found in most laboratories, images of mixtures of colorants can be taken in microtitration plates.
View Article and Find Full Text PDFAnal Bioanal Chem
February 2011
The use of proton nuclear magnetic resonance (¹H-NMR) for the quantitation of additives in a commercial electrolytic nickel bath (Supreme Plus Brilliant, Atotech formulation) is reported. A simple and quick method is described that needs only the separation of nickel ions by precipitation with NaOH. The four additives in the bath (A-5(2X), leveler; Supreme Plus Brightener (SPB); SA-1, leveler; NPA, wetting agent; all of them are commercial names from Atotech) can be quantified, whereas no other analytical methods have been found in the literature for SA-1 and NPA.
View Article and Find Full Text PDFA methodology is proposed to estimate the limit of detection (LOD) of analytical methods when multivariate calibration is applied. It tries to follow the same premises as the IUPAC methodology for univariate calibration. The mathematical support is given and algorithms such as partial least squares (PLS) regression, PLS2 and principal component regression (PCR) are used.
View Article and Find Full Text PDF