Exposure to increased temperatures during early development can lead to phenotypic plasticity in morphology, physiology, and behavior across a range of ectothermic animals. In addition, maternal effects are known to be important contributors to phenotypic variation in offspring. Whether the 2 factors interact to shape offspring morphology and behavior is rarely explored.
View Article and Find Full Text PDFWhether sexual selection facilitates or hampers the ability to plastically respond to novel environments might depend on population structure, via its effects on sexual interactions and associated fitness payoffs. Using experimentally evolved lines of the seed beetle Callosobruchus maculatus, we tested whether individuals evolving under different sexual selection (monogamy vs. polygamy) and population spatial structure (metapopulation vs.
View Article and Find Full Text PDFOn a global scale, organisms face significant challenges due to climate change and anthropogenic disturbance. In many ectotherms, developmental and physiological processes are sensitive to changes in temperature and resources. Developmental plasticity in thermal physiology may provide adaptive advantages to environmental extremes if early environmental conditions are predictive of late-life environments.
View Article and Find Full Text PDFGlob Ecol Biogeogr
September 2022
Aim: Urbanization exposes species to novel ecological conditions. Some species thrive in urban areas, whereas many others are excluded from these human-made environments. Previous analyses suggest that the ability to cope with rapid environmental change is associated with long-term patterns of diversification, but whether the suite of traits associated with the ability to colonize urban environments is linked to this process remains poorly understood.
View Article and Find Full Text PDFAs the area covered by human-modified environments grows, it is increasingly important to understand the responses of communities to the novel habitats created, especially for sensitive and threatened taxa. We aimed to improve understanding of the major evolutionary and ecological processes that shape the assemblage of amphibian and reptile communities to forest modifications. To this end, we compiled a global data set of amphibian and reptile surveys in natural, disturbed (burned, logged), and transformed (monocultures, polyspecific plantations) forest communities to assess the richness, phylogenetic diversity, and composition of those communities, as well as the morphological disparity among taxa between natural and modified forest habitats.
View Article and Find Full Text PDFDevelopmental and adult environments can interact in complex ways to influence the fitness of individuals. Most studies investigating effects of the environment on fitness focus on environments experienced and traits expressed at a single point in an organism's life. However, environments vary with time, so the effects of the environments that organisms experience at different ages may interact to affect how traits change throughout life.
View Article and Find Full Text PDFDestruction of natural habitats for tree plantations is a major threat to wildlife. These novel environments elicit behavioural changes that can either be detrimental or beneficial to survival and reproduction, with population - and community - level consequences. However, compared with well-documented changes following other forms of habitat modification, we know little about wildlife behavioural responses to tree plantations, and even less about their associated fitness costs.
View Article and Find Full Text PDFComparative analyses have a long history of macro-ecological and -evolutionary approaches to understand structure, function, mechanism and constraint. As the pace of science accelerates, there is ever-increasing access to diverse types of data and open access databases that are enabling and inspiring new research. Whether conducting a species-level trait-based analysis or a formal meta-analysis of study effect sizes, comparative approaches share a common reliance on reliable, carefully curated databases.
View Article and Find Full Text PDFMaternal effects are an important evolutionary force that may either facilitate adaptation to a new environment or buffer against unfavourable conditions. The degree of variation in traits expressed by siblings from different mothers is often sensitive to environmental conditions. This could generate a Maternal-by-Environment interaction (M × E) that inflates estimates of Genotype-by-Environment effects (G × E).
View Article and Find Full Text PDFTemperature experienced during early development can affect a range of adult life-history traits. Animals often show seemingly adaptive developmental plasticity-with animals reared at certain temperatures performing better as adults at those temperatures. The extent to which this type of adaptive response occurs in gonadal tissue that affects sperm traits is, however, poorly studied.
View Article and Find Full Text PDFAs cities continue to grow it is increasingly important to understand the long-term responses of wildlife to urban environments. There have been increased efforts to determine whether urbanization imposes chronic stress on wild animals, but empirical evidence is mixed. Here, we conduct a meta-analysis to test whether there is, on average, a detrimental effect of urbanization based on baseline and stress-induced glucocorticoid levels of wild vertebrates.
View Article and Find Full Text PDFIn intraspecific competition, the sex of competing individuals is likely to be important in determining the outcome of competitive interactions and the way exposure to conspecifics during development influences adult fitness traits. Previous studies have explored differences between males and females in their response to intraspecific competition. However, few have tested how the sex of the competitors, or any interactions between focal and competitor sex, influences the nature and intensity of competition.
View Article and Find Full Text PDFUrbanization leads to a rapid and drastic transformation of habitats, forcing native fauna to manage novel ecological challenges or to move. Sexual selection is a powerful evolutionary force, which is sometimes predicted to enhance the ability of species to adapt to novel environments because it allows females to choose high-quality males, but other times is predicted to reduce the viability of populations because it pushes males beyond naturally selected optima. However, we do not know whether or how sexual selection contributes to the likelihood that animals will establish in urban areas.
View Article and Find Full Text PDFMany studies investigate the benefits of polyandry, but repeated interactions with males can lower female reproductive success. Interacting with males might even decrease offspring performance if it reduces a female's ability to transfer maternal resources. Male presence can be detrimental for females in two ways: by forcing females to mate at a higher rate and through costs associated with resisting male mating attempts.
View Article and Find Full Text PDFSexual selection is a powerful agent of evolution, driving microevolutionary changes in the genome and macroevolutionary rates of lineage diversification. The mechanisms by which sexual selection might influence macroevolution remain poorly understood. For example, sexual selection might drive positive selection for key adaptations that facilitate diversification.
View Article and Find Full Text PDFConsequences of human actions like global warming, spread of exotic species or resource consumption are pushing species to extinction. Even species considered to be at low extinction risk often show signs of local declines. Here, we evaluate the impact of eucalypt plantations, the best-known exotic tree species worldwide and its interaction with temperature and predators on amphibian development, growth, antipredator responses and physiology.
View Article and Find Full Text PDFEnvironmental conditions experienced by a species during its evolutionary history may shape the signals it uses for communication. Consequently, rapid environmental changes may lead to less effective signals, which interfere with communication between individuals, altering life history traits such as predator detection and mate searching. Increased temperature can reduce the efficacy of scent marks released by male lizards, but the extent to which this negative effect is related to specific biological traits and evolutionary histories across species and populations have not been explored.
View Article and Find Full Text PDFBackground: The optimal allocation of resources to sexual signals and other life history traits is usually dependent on an individual's condition, while variation in the expression of sexual traits across environments depends on the combined effects of local adaptation, mean condition, and phenotypic responses to environment-specific cues that affect resource allocation. A clear contrast can often be drawn between natural habitats and novel habitats, such as forest plantations and urban areas. In some species, males seem to change their sexual signals in these novel environments, but why this occurs and how it affects signal reliability is still poorly understood.
View Article and Find Full Text PDF