Background: Campylobacter species are the most common cause of bacterial gastroenteritis in the developed world. However, comparatively few studies have determined the epidemiological features of campylobacteriosis in resource-poor settings.
Methods: A total of 1,941 faecal specimens collected from symptomatic (diarrhoeic) children and 507 specimens from asymptomatic (non-diarrhoeic) children hospitalised in Blantyre, Malawi, between 1997 and 2007, and previously tested for the presence of rotavirus and norovirus, was analysed for C.
FrpB is an outer membrane transporter from Neisseria meningitidis, the causative agent of meningococcal meningitis. It is a member of the TonB-dependent transporter (TBDT) family and is responsible for iron uptake into the periplasm. FrpB is subject to a high degree of antigenic variation, principally through a region of hypervariable sequence exposed at the cell surface.
View Article and Find Full Text PDFWhole genome sequence (WGS) data are increasingly used to characterise bacterial pathogens. These data provide detailed information on the genotypes and likely phenotypes of aetiological agents, enabling the relationships of samples from potential disease outbreaks to be established precisely. However, the generation of increasing quantities of sequence data does not, in itself, resolve the problems that many microbiological typing methods have addressed over the last 100 years or so; indeed, providing large volumes of unstructured data can confuse rather than resolve these issues.
View Article and Find Full Text PDFZoonotic pathogens often infect several animal species, and gene flow among populations infecting different host species may affect the biological traits of the pathogen including host specificity, transmissibility and virulence. The bacterium Campylobacter jejuni is a widespread zoonotic multihost pathogen, which frequently causes gastroenteritis in humans. Poultry products are important transmission vehicles to humans, but the bacterium is common in other domestic and wild animals, particularly birds, which are a potential infection source.
View Article and Find Full Text PDFHybridization between distantly related organisms can facilitate rapid adaptation to novel environments, but is potentially constrained by epistatic fitness interactions among cell components. The zoonotic pathogens Campylobacter coli and C. jejuni differ from each other by around 15% at the nucleotide level, corresponding to an average of nearly 40 amino acids per protein-coding gene.
View Article and Find Full Text PDFFor over 100 years, large epidemics of meningococcal meningitis have occurred every few years in areas of the African Sahel and sub-Sahel known as the African meningitis belt. Until recently, the main approach to the control of these epidemics has been reactive vaccination with a polysaccharide vaccine after an outbreak has reached a defined threshold and provision of easy access to effective treatment but this approach has not prevented the occurrence of new epidemics. Meningococcal conjugate vaccines, which can prevent meningococcal carriage and thus interrupt transmission, may be more effective than polysaccharide vaccines at preventing epidemics.
View Article and Find Full Text PDFClosely related bacterial isolates can display divergent phenotypes. This can limit the usefulness of phylogenetic studies for understanding bacterial ecology and evolution. Here, we compare phenotyping based on Raman spectrometric analysis of cellular composition to phylogenetic classification by ribosomal multilocus sequence typing (rMLST) in 108 isolates of the zoonotic pathogens Campylobacter jejuni and C.
View Article and Find Full Text PDFNeisseria meningitidis is a major cause of septicaemia and meningitis worldwide. Most disease in Europe, the Americas and Australasia is caused by meningococci expressing serogroup B capsules, but no vaccine against this polysaccharide exists. Potential candidates for 'serogroup B substitute' vaccines are outer membrane protein antigens including the typing antigens PorA and FetA.
View Article and Find Full Text PDFHuman campylobacteriosis exhibits a distinctive seasonality in temperate regions. This paper aims to identify the origins of this seasonality. Clinical isolates [typed by multi-locus sequence typing (MLST)] and epidemiological data were collected from Scotland.
View Article and Find Full Text PDFMicrobiology (Reading)
November 2012
Human campylobacteriosis, caused by the zoonotic bacteria Campylobacter jejuni and Campylobacter coli, remains a major cause of gastroenteritis worldwide. For many countries the implementation of effective interventions to reduce the burden of this disease is a high priority. Nucleotide sequence-based typing, including multilocus sequence typing (MLST) and antigen gene sequence typing (AGST), has provided unified, comprehensive, and portable Campylobacter isolate characterization, with curated databases of genotypes available (pubMLST.
View Article and Find Full Text PDFEpidemic disease caused by Neisseria meningitidis, the meningococcus, has been recognized for two centuries, but remains incompletely controlled and understood. There have been dramatic reductions in serogroup A and C meningococcal disease following the introduction of protein-polysaccharide conjugate vaccines, but there is currently no comprehensive vaccine against serogroup B meningococci. Genetic analyses of meningococcal populations have provided many insights into the biology, evolution and pathogenesis of this important pathogen.
View Article and Find Full Text PDFTemporal and seasonal trends in Campylobacter genotypes causing human gastroenteritis were investigated in a 6-year study of 3,300 recent isolates from Oxfordshire, United Kingdom. Genotypes (sequence types [ST]) were defined using multilocus sequence typing and assigned to a clonal complex (a cluster of related strains that share four or more identical alleles with a previously defined central genotype). A previously undescribed clonal complex (ST-464) was identified which, together with ST-42, ST-45, and ST-52 complexes, showed increasing incidence.
View Article and Find Full Text PDFThe increase in the capacity and reduction in cost of whole-genome sequencing methods present the imminent prospect of such data being used routinely in real time for investigations of bacterial disease outbreaks. For this to be realized, however, it is necessary that generic, portable, and robust analysis frameworks be available, which can be readily interpreted and used in real time by microbiologists, clinicians, and public health epidemiologists. We have achieved this with a set of analysis tools integrated into the PubMLST.
View Article and Find Full Text PDFSingle locus variants (SLVs) are bacterial sequence types that differ at only one of the seven canonical multilocus sequence typing (MLST) loci. Estimating the relative roles of recombination and point mutation in the generation of new alleles that lead to SLVs is helpful in understanding how organisms evolve. The relative rates of recombination and mutation for Campylobacter jejuni and Campylobacter coli were estimated at seven different housekeeping loci from publically available MLST data.
View Article and Find Full Text PDFThe eradication of infectious agents is an attractive means of disease control that, to date, has been achieved for only one human pathogen, the smallpox virus. The introduction of vaccines against Neisseria meningitidis into immunisation schedules, and particularly the conjugate polysaccharide vaccines which can interrupt transmission, raises the question of whether disease caused by this obligate human bacterium can be controlled, eliminated, or even eradicated. The limited number of meningococcal serogroups, lack of an animal reservoir, and importance of meningococcal disease are considerations in favour of eradication; however, the commensal nature of most infections, the high diversity of meningococcal populations, and the lack of comprehensive vaccines are all factors that suggest that this is not feasible.
View Article and Find Full Text PDFIn common with other bacterial taxa, members of the genus Neisseria are classified using a range of phenotypic and biochemical approaches, which are not entirely satisfactory in assigning isolates to species groups. Recently, there has been increasing interest in using nucleotide sequences for bacterial typing and taxonomy, but to date, no broadly accepted alternative to conventional methods is available. Here, the taxonomic relationships of 55 representative members of the genus Neisseria have been analysed using whole-genome sequence data.
View Article and Find Full Text PDFWe sought to explain seasonality and other aspects of Campylobacter jejuni epidemiology by integrating population genetic and epidemiological analysis in a large 3-year longitudinal, two-centre, population-based study. Epidemiological information was collected for 1505 isolates, which were multilocus sequence-typed. Analyses compared pathogen population structure between areas, over time, and between clinical presentations.
View Article and Find Full Text PDFNo single genealogical reconstruction or typing method currently encompasses all levels of bacterial diversity, from domain to strain. We propose ribosomal multilocus sequence typing (rMLST), an approach which indexes variation of the 53 genes encoding the bacterial ribosome protein subunits (rps genes), as a means of integrating microbial genealogy and typing. As with multilocus sequence typing (MLST), rMLST employs curated reference sequences to identify gene variants efficiently and rapidly.
View Article and Find Full Text PDFFactor H binding protein (fHbp) is a major antigenic component of novel vaccines designed to protect against meningococcal disease. Prediction of the potential coverage of these vaccines is difficult, as fHbp is antigenically variable and levels of expression differ among isolates. Transcriptional regulation of the fHbp gene is poorly understood, although evidence suggests that oxygen availability is involved.
View Article and Find Full Text PDFCampylobacteriosis remains a major human public health problem world-wide. Genetic analyses of Campylobacter isolates, and particularly molecular epidemiology, have been central to the study of this disease, particularly the characterization of Campylobacter genotypes isolated from human infection, farm animals, and retail food. These studies have demonstrated that Campylobacter populations are highly structured, with distinct genotypes associated with particular wild or domestic animal sources, and that chicken meat is the most likely source of most human infection in countries such as the UK.
View Article and Find Full Text PDFCampylobacter successfully colonizes broiler chickens, but little is known about the longer term natural history of colonization, since most flocks are slaughtered at an immature age. In this study, the prevalence and genetic diversity of Campylobacter colonizing a single free-range broiler breeder flock was investigated over the course of a year. The age of the flock was the most important factor in determining both the prevalence and diversity of Campylobacter over time.
View Article and Find Full Text PDFIdentifying the Campylobacter genotypes that colonize farmed and wild ducks will help to assess the proportion of human disease that is potentially attributable to the consumption of duck meat and environmental exposure to duck faeces. Comparison of temporally and geographically matched farmed and wild ducks showed that they had different Campylobacter populations in terms of: (i) prevalence, (ii) Campylobacter species and (iii) diversity of genotypes. Furthermore, 92.
View Article and Find Full Text PDFThe relationship between carriage and the development of invasive meningococcal disease is not fully understood. We investigated the changes in meningococcal carriage in 892 military recruits in Finland during a nonepidemic period (July 2004 to January 2006) and characterized all of the oropharyngeal meningococcal isolates obtained (n = 215) by using phenotypic (serogrouping and serotyping) and genotypic (porA typing and multilocus sequence typing) methods. For comparison, 84 invasive meningococcal disease strains isolated in Finland between January 2004 and February 2006 were also analyzed.
View Article and Find Full Text PDFMultilocus sequence analysis of 417 strains of Yersinia pseudotuberculosis revealed that it is a complex of four populations, three of which have been previously assigned species status [Y. pseudotuberculosis sensu stricto (s.s.
View Article and Find Full Text PDF