J Cogn Neurosci
December 2024
This special focus article was prepared to honor the memory of our National Institutes of Health colleague, friend, and mentor Leslie G. Ungerleider, who passed away in December 2020, and is based on a presentation given at a symposium held in her honor at the National Institutes of Health in September 2022. In this article, we describe an extension of Leslie Ungerleider's influential work on the object analyzer pathway in which the inferior temporal visual cortex interacts with the amygdala, and then discuss a broader role for the amygdala in stimulus-outcome associative learning in humans and nonhuman primates.
View Article and Find Full Text PDFDeciding whether to forego immediate rewards or explore new opportunities is a key component of flexible behavior and is critical for the survival of the species. Although previous studies have shown that different cortical and subcortical areas, including the amygdala and ventral striatum (VS), are implicated in representing the immediate (exploitative) and future (explorative) value of choices, the effect of the motor system used to make choices has not been examined. Here, we tested male rhesus macaques with amygdala or VS lesions on two versions of a three-arm bandit task where choices were registered with either a saccade or an arm movement.
View Article and Find Full Text PDFLesion studies in macaques suggest dissociable functions of the orbitofrontal cortex (OFC) and medial frontal cortex (MFC), with OFC being essential for goal-directed decision-making and MFC supporting social cognition. Bilateral amygdala damage results in impairments in both of these domains. There are extensive reciprocal connections between these prefrontal areas and the amygdala; however, it is not known whether the dissociable roles of OFC and MFC depend on functional interactions with the amygdala.
View Article and Find Full Text PDFThe neural systems that underlie reinforcement learning (RL) allow animals to adapt to changes in their environment. In the present study, we examined the hypothesis that the amygdala would have a preferential role in learning the values of visual objects. We compared a group of monkeys (Macaca mulatta) with amygdala lesions to a group of unoperated controls on a two-armed bandit reversal learning task.
View Article and Find Full Text PDFStudies of humans with focal brain damage and non-human animals with experimentally induced brain lesions have provided pivotal insights into the neural basis of behavior. As the repertoire of neural manipulation and recording techniques expands, the utility of studying permanent brain lesions bears re-examination. Studies on the effects of permanent lesions provide vital data about brain function that are distinct from those of reversible manipulations.
View Article and Find Full Text PDFAnxiety disorders are characterized by excessive attention to threat. Several brain areas, including the orbitofrontal cortex (OFC), have been associated with threat processing, with more recent work implicating specialized roles for the medial and lateral subregions of the OFC in mediating specific symptoms of anxiety disorders. Virtually no causal work, however, has evaluated the role of these OFC subregions in regulating behavioral responses under threat.
View Article and Find Full Text PDFUnlabelled: The ventral striatum and ventromedial prefrontal cortex (vmPFC) are two central nodes of the "reward circuit" of the brain. Human neuroimaging studies have demonstrated coincident activation and functional connectivity between these brain regions, and animal studies have demonstrated that the vmPFC modulates ventral striatum activity. However, there have been no comparable data in humans to address whether the vmPFC may be critical for the reward-related response properties of the ventral striatum.
View Article and Find Full Text PDFOne paradigmatic example of "irrational" bias in human economic decision-making-known as the "reflection effect"-is a tendency to prefer sure amounts over risky gambles in situations involving potential gain, but to prefer risky gambles over sure amounts in situations involving potential loss. To date, there is no causal evidence regarding the neural basis of the reflection effect. The ventromedial prefrontal cortex (vmPFC) is believed to play a critical role in mediating value-based decision-making.
View Article and Find Full Text PDFDepression is a prevalent psychiatric condition characterized by sad mood and anhedonia. Neuroscientific research has consistently identified abnormalities in a network of brain regions in major depression, including subregions of the anterior cingulate cortex (ACC). However, few studies have investigated whether the same neural correlates of depression symptom severity are apparent in subclinical or healthy subjects.
View Article and Find Full Text PDFPsychopathy is a personality disorder characterized by callous lack of empathy, impulsive antisocial behavior, and criminal recidivism. Here, we performed the largest diffusion tensor imaging (DTI) study of incarcerated criminal offenders to date (N = 147) to determine whether psychopathy severity is linked to the microstructural integrity of major white matter tracts in the brain. Consistent with the results of previous studies in smaller samples, we found that psychopathy was associated with reduced fractional anisotropy in the right uncinate fasciculus (UF; the major white matter tract connecting ventral frontal and anterior temporal cortices).
View Article and Find Full Text PDFPsychopathy is a personality disorder characterized by callous antisocial behavior and criminal recidivism. Here we examine whether psychopathy is associated with alterations in functional connectivity in three large-scale cortical networks. Using fMRI in 142 adult male prison inmates, we computed resting-state functional connectivity using seeds from the default mode network, frontoparietal network, and cingulo-opercular network.
View Article and Find Full Text PDF