Publications by authors named "Maia Kivisaar"

Contamination of the environment with crude oil or other fuels is an enormous disaster for all organisms. The microbial communities for bioremediation have been an effective tool for eliminating pollution. This study aimed to determine individual cultures' and a strain mixture's ability to utilize alkanes (single alkanes and crude oil).

View Article and Find Full Text PDF

Delicate variances in the translational machinery affect how efficiently different organisms approach protein synthesis. Determining the scale of this effect, however, requires knowledge on the differences of mistranslation levels. Here, we used a dual-luciferase reporter assay cloned into a broad host range plasmid to reveal the translational fidelity profiles of and .

View Article and Find Full Text PDF

The biofilm of is complexly regulated by several intercellular and extracellular factors. The cell surface adhesin LapA of this bacterium is a central factor for the biofilm and, consequently, the regulation of expression, for example, by Fis. It has been recently shown that peptides in growth media enhance the formation of biofilm, but not as a source of carbon and nitrogen.

View Article and Find Full Text PDF

Extracellular factors and growth conditions can affect the formation and development of bacterial biofilms. The biofilm of has been studied for decades, but so far, little attention has been paid to the components of the medium that may affect the biofilm development in a closed system. It is known that Fis strongly enhances biofilm in complete LB medium.

View Article and Find Full Text PDF

Bioaugmentation in wastewater treatment plants (WWTPs) is challenging due to low survival and persistence of applied microbes. This study aimed to track the capacity and survival of fluorescent-tagged Pseudomonas oleovoransICTN13 as a model organism applicable in bioaugmentation of phenol-containing wastewater. The isolate was immobilized in alginate biopolymer, and enhanced efficacy and survival for biodegradation of phenol against free cells were studied.

View Article and Find Full Text PDF

Pseudouridines are known to be important for optimal translation. In this study we demonstrate an unexpected link between pseudouridylation of tRNA and mutation frequency in species. We observed that the lack of pseudouridylation activity of pseudouridine synthases TruA or RluA elevates the mutation frequency in 3 to 5-fold.

View Article and Find Full Text PDF

The drilling, processing and transportation of oil are the main sources of pollution in water and soil. The current work analyzes the microbial diversity and aromatic compounds degradation potential in the metagenomes of communities in the wastewater treatment plant (WWTP) of a crude oil refinery. By focusing on the degradation of phenol, we observed the involvement of diverse indigenous microbial communities at different steps of the WWTP.

View Article and Find Full Text PDF

is a fast-growing bacterium found mostly in temperate soil and water habitats. The metabolic versatility of makes this organism attractive for biotechnological applications such as biodegradation of environmental pollutants and synthesis of added-value chemicals (biocatalysis). This organism has been extensively studied in respect to various stress responses, mechanisms of genetic plasticity and transcriptional regulation of catabolic genes.

View Article and Find Full Text PDF

Bacteria evolve as a result of mutations and acquisition of foreign DNA by recombination processes. A growing body of evidence suggests that mutation and recombination rates are not constant across the bacterial chromosome. Bacterial chromosomal DNA is organized into a compact nucleoid structure which is established by binding of the nucleoid-associated proteins (NAPs) and other proteins.

View Article and Find Full Text PDF

Nucleoid-associated proteins (NAPs) such as IHF, HU, Fis, and H-NS alter the topology of bound DNA and may thereby affect accessibility of DNA to repair and recombination processes. To examine this possibility, we investigated the effect of IHF on the frequency of homologous recombination (HR) and point mutations in soil bacterium Pseudomonas putida by using plasmidial and chromosomal assays. We observed positive effect of IHF on the frequency of HR, whereas this effect varied depending both on the chromosomal location of the HR target and the type of plasmid used in the assay.

View Article and Find Full Text PDF

The biological treatment of oil refinery effluents in wastewater treatment plants (WWTPs) relies on specialized bacteria contributing to remove organic load, nitrogen, sulfur, and phosphorus compounds. Knowledge about bacterial dynamics in WWTPs and how they affect the performance of the wastewater treatment is limited, particularly in tropical countries. The bacterial communities from three compartments of an oil refinery WWTP in Uran, India, were assessed using 16S-metabarcoding, in winter and monsoon seasons, upstream (from the surge pond) and downstream the biotower (clarifier and guard pond), to understand the effects of seasonal variations in WWTP's efficiency.

View Article and Find Full Text PDF

Oxidation of aromatic compounds can be mutagenic due to the accumulation of reactive oxygen species (ROS) in bacterial cells and thereby facilitate evolution of corresponding catabolic pathways. To examine the effect of the background biochemical network on the evolvability of environmental bacteria hosting a new catabolic pathway, Akkaya and colleagues (mBio 9:e01512-18, 2018, https://doi.org/10.

View Article and Find Full Text PDF

Stalled RNA polymerases (RNAPs) pose an obstacle for the replicating complexes, which could lead to transcription-replication conflicts and result in genetic instability. Stalled RNAPs and DNA lesions blocking RNAP elongation are removed by transcription-coupled repair (TCR), the process which in bacteria is mediated by TCR factor Mfd and helicase UvrD. Although the mechanism of TCR has been extensively studied, its role in mutagenesis is still obscure.

View Article and Find Full Text PDF

Root colonization of plant growth-promoting bacteria is a complex multistep process that is influenced by several factors. For example, during adherence to plant roots, bacteria have to endure reactive oxygen species (ROS) produced by plants. In this study, we report that the global transcriptional regulator Fis is involved in the regulation of ROS-tolerance of Pseudomonas putida and thereby affects barley root colonization.

View Article and Find Full Text PDF

LapA is the biggest protein in Pseudomonas putida and a key factor for biofilm formation. Its importance and posttranslational regulation is rather thoroughly studied but less is known about the transcriptional regulation. Here we give evidence that transcription of lapA in LB-grown bacteria is initiated from six promoters, three of which display moderate RpoS-dependence.

View Article and Find Full Text PDF

Bacteria can rapidly evolve mechanisms allowing them to use toxic environmental pollutants as a carbon source. In the current study we examined whether the survival and evolution of indigenous bacteria with the capacity to degrade organic pollutants could be connected with increased mutation frequency. The presence of constitutive and transient mutators was monitored among 53 pollutants-degrading indigenous bacterial strains.

View Article and Find Full Text PDF

Sublines of the major P. aeruginosa reference strain PAO1 are derivatives of the original PAO1 isolate, which are maintained in laboratories worldwide. These sublines display substantial genomic and phenotypic variation due to ongoing microevolution.

View Article and Find Full Text PDF

Translesion DNA synthesis (TLS), facilitated by low-fidelity polymerases, is an important DNA damage tolerance mechanism. Here, we investigated the role and biological function of TLS polymerase ImuC (former DnaE2), generally present in bacteria lacking DNA polymerase V, and TLS polymerase DinB in response to DNA alkylation damage in Pseudomonas aeruginosa and P. putida.

View Article and Find Full Text PDF

The ability of bacteria to regulate cell surface hydrophobicity is important for the adaptation to different environmental conditions. The hydrophobicity of cell surface can be determined by several factors, including outer membrane and surface proteins. In this study, we report that an adhesin LapF influences cell surface hydrophobicity of Pseudomonas putida.

View Article and Find Full Text PDF

Formation of microcolonies (papillae) permits easy visual screening of mutational events occurring in single colonies of bacteria. In this study, we have established a novel papillation assay employable in a wide range of pseudomonads including Pseudomonas aeruginosa and Pseudomonas putida for monitoring mutation frequency in distinct colonies. With the aid of this assay, we conducted a genome-wide search for the factors affecting mutation frequency in P.

View Article and Find Full Text PDF

Under growth-restricting conditions bacterial populations can rapidly evolve by a process known as stationary-phase mutagenesis. Bacterial nonhomologous end-joining (NHEJ) system which consists of the DNA-end-binding enzyme Ku and the multifunctional DNA ligase LigD has been shown to be important for survival of bacteria especially during quiescent states, such as late stationary-phase populations or sporulation. In this study we provide genetic evidence that NHEJ enzymes participate in stationary-phase mutagenesis in a population of carbon-starved Pseudomonas putida.

View Article and Find Full Text PDF

The biofilm matrix of the rhizospheric bacterium Pseudomonas putida consists mainly of a proteinaceous component. The two largest P. putida proteins, adhesins LapA and LapF, are involved in biofilm development but prevail in different developmental stages of the biofilm matrix.

View Article and Find Full Text PDF

In addition to its prominence in producing genetic diversity in bacterial species, homologous recombination (HR) plays a key role in DNA repair and damage tolerance. The frequency of HR depends on several factors, including the efficiency of DNA repair systems as HR is involved in recovery of replication forks perturbed by DNA damage. Nucleotide excision repair (NER) is one of the major DNA repair pathways involved in repair of a broad range of DNA lesions generally induced by exogenous chemicals or UV-irradiation and its functions in the cells not exposed to DNA-damaging agents have attracted less attention.

View Article and Find Full Text PDF