Publications by authors named "Maia Kinnebrew"

Smoothened (SMO), a member of the G Protein-Coupled Receptor superfamily, mediates Hedgehog signaling and is linked to cancer and birth defects. SMO responds to accessible cholesterol in the ciliary membrane, translocating it via a longitudinal tunnel to its extracellular domain. Reaching a complete mechanistic understanding of the cholesterol translocation process would help in the development of cancer therapies.

View Article and Find Full Text PDF

Lipid synthesis is regulated by the actions of Scap, a polytopic membrane protein that binds cholesterol in membranes of the endoplasmic reticulum (ER). When ER cholesterol levels are low, Scap activates SREBPs, transcription factors that upregulate genes for synthesis of cholesterol, fatty acids, and triglycerides. When ER cholesterol levels rise, the sterol binds to Scap, triggering conformational changes that prevent activation of SREBPs and halting synthesis of lipids.

View Article and Find Full Text PDF

Homeostatic control of intracellular ionic strength is essential for protein, organelle and genome function, yet mechanisms that sense and enable adaptation to ionic stress remain poorly understood in animals. We find that the transcription factor NFAT5 directly senses solution ionic strength using a C-terminal intrinsically disordered region. Both in intact cells and in a purified system, NFAT5 forms dynamic, reversible biomolecular condensates in response to increasing ionic strength.

View Article and Find Full Text PDF

Patched1 (PTCH1) is a tumor suppressor protein of the mammalian Hedgehog (HH) signaling pathway, implicated in embryogenesis and tissue homeostasis. PTCH1 inhibits the G protein-coupled receptor Smoothened (SMO) via a debated mechanism involving modulating ciliary cholesterol accessibility. Using extensive molecular dynamics simulations and free energy calculations to evaluate cholesterol transport through PTCH1, we find an energetic barrier of ~15 to 20 kilojoule per mole for cholesterol export.

View Article and Find Full Text PDF

Patched1 (PTCH1) is the principal tumour suppressor protein of the mammalian Hedgehog (HH) signalling pathway, implicated in embryogenesis and tissue homeostasis. PTCH1 inhibits the Class F G protein-coupled receptor Smoothened (SMO) via a debated mechanism involving modulating accessible cholesterol levels within ciliary membranes. Using extensive molecular dynamics (MD) simulations and free energy calculations to evaluate cholesterol transport through PTCH1, we find an energetic barrier of ~15-20 kJ mol for cholesterol export.

View Article and Find Full Text PDF

The functional properties of proteorhodopsin (PR) have been found to be strongly modulated by oligomeric distributions and lipid membrane mimetics. This study aims to distinguish and explain their effects by investigating how oligomer formation impacts PR's function of proton transport in lipid-based membrane mimetic environments. We find that PR forms stable hexamers and pentamers in both E.

View Article and Find Full Text PDF

Smoothened (SMO) transduces the Hedgehog (Hh) signal across the plasma membrane in response to accessible cholesterol. Cholesterol binds SMO at two sites: one in the extracellular cysteine-rich domain (CRD) and a second in the transmembrane domain (TMD). How these two sterol-binding sites mediate SMO activation in response to the ligand Sonic Hedgehog (SHH) remains unknown.

View Article and Find Full Text PDF

A long-standing mystery in vertebrate Hedgehog signaling is how Patched 1 (PTCH1), the receptor for Hedgehog ligands, inhibits the activity of Smoothened, the protein that transmits the signal across the membrane. We previously proposed (Kinnebrew et al., 2019) that PTCH1 inhibits Smoothened by depleting accessible cholesterol from the ciliary membrane.

View Article and Find Full Text PDF

Cholesterol is an abundant lipid in mammalian plasma membranes that regulates the reception of the Hedgehog (Hh) signal in target cells. In vertebrates, cell-surface organelles called primary cilia function as compartments for the propagation of Hh signals. Recent structural, biochemical, and cell-biological studies have led to the model that Patched-1 (PTCH1), the receptor for Hh ligands, uses its transporter-like activity to lower cholesterol accessibility in the membrane surrounding primary cilia.

View Article and Find Full Text PDF

Gene regulatory divergence is thought to play a central role in determining human-specific traits. However, our ability to link divergent regulation to divergent phenotypes is limited. Here, we utilized human-chimpanzee hybrid induced pluripotent stem cells to study gene expression separating these species.

View Article and Find Full Text PDF

Previously we proposed that transmission of the hedgehog signal across the plasma membrane by Smoothened is triggered by its interaction with cholesterol (Luchetti et al., 2016). But how is cholesterol, an abundant lipid, regulated tightly enough to control a signaling system that can cause birth defects and cancer? Using toxin-based sensors that distinguish between distinct pools of cholesterol, we find that Smoothened activation and Hedgehog signaling are driven by a biochemically-defined, small fraction of membrane cholesterol, termed accessible cholesterol.

View Article and Find Full Text PDF

Hedgehog (HH) ligands, classical morphogens that pattern embryonic tissues in all animals, are covalently coupled to two lipids-a palmitoyl group at the N terminus and a cholesteroyl group at the C terminus. While the palmitoyl group binds and inactivates Patched 1 (PTCH1), the main receptor for HH ligands, the function of the cholesterol modification has remained mysterious. Using structural and biochemical studies, along with reassessment of previous cryo-electron microscopy structures, we find that the C-terminal cholesterol attached to Sonic hedgehog (Shh) binds the first extracellular domain of PTCH1 and promotes its inactivation, thus triggering HH signaling.

View Article and Find Full Text PDF

The Hedgehog (HH) signalling pathway is a cell-cell communication system that controls the patterning of multiple tissues during embryogenesis in metazoans. In adults, HH signals regulate tissue stem cells and regenerative responses. Abnormal signalling can cause birth defects and cancer.

View Article and Find Full Text PDF

To uncover regulatory mechanisms in Hedgehog (Hh) signaling, we conducted genome-wide screens to identify positive and negative pathway components and validated top hits using multiple signaling and differentiation assays in two different cell types. Most positive regulators identified in our screens, including Rab34, Pdcl, and Tubd1, were involved in ciliary functions, confirming the central role for primary cilia in Hh signaling. Negative regulators identified included Megf8, Mgrn1, and an unannotated gene encoding a tetraspan protein we named Atthog.

View Article and Find Full Text PDF

Protein aggregation plays a critical role in the pathogenesis of neurodegenerative diseases, and the mechanism of its progression is poorly understood. Here, we examine the structural and dynamic characteristics of transiently evolving protein aggregates under ambient conditions by directly probing protein surface water diffusivity, local protein segment dynamics, and interprotein packing as a function of aggregation time, along the third repeat domain and C terminus of Δtau187 spanning residues 255-441 of the longest isoform of human tau. These measurements were achieved with a set of highly sensitive magnetic resonance tools that rely on site-specific electron spin labeling of Δtau187.

View Article and Find Full Text PDF

The plasma membrane is the crucial interface between the cell and its exterior, packed with embedded proteins experiencing simultaneous protein-protein and protein-membrane interactions. A prominent example of cell membrane complexity is the assembly of transmembrane proteins into oligomeric structures, with potential functional consequences that are not well understood. From the study of proteorhodopsin (PR), a prototypical seven-transmembrane light-driven bacterial proton pump, we find evidence that the inter-protein interaction modulated by self-association yields functional changes observable from the protein interior.

View Article and Find Full Text PDF

The structural organization of the functionally relevant, hexameric oligomer of green-absorbing proteorhodopsin (G-PR) was obtained from double electron-electron resonance (DEER) spectroscopy utilizing conventional nitroxide spin labels and recently developed Gd3+ -based spin labels. G-PR with nitroxide or Gd3+ labels was prepared using cysteine mutations at residues Trp58 and Thr177. By combining reliable measurements of multiple interprotein distances in the G-PR hexamer with computer modeling, we obtained a structural model that agrees with the recent crystal structure of the homologous blue-absorbing PR (B-PR) hexamer.

View Article and Find Full Text PDF

Oligomerization has important functional implications for many membrane proteins. However, obtaining structural insight into oligomeric assemblies is challenging, as they are large and resist crystallization. We focus on proteorhodopsin (PR), a protein with seven transmembrane α-helices that was found to assemble to hexamers in densely packed lipid membrane, or detergent-solubilized environments.

View Article and Find Full Text PDF