Publications by authors named "Mai Toom"

Visual perception is capable of pooling multiple local orientation signals into a single more accurate summary orientation. However, there is still a lack of systematic inquiry into which summary statistics are implemented in that process. Here, the task was to recognize in which direction, clockwise or counter-clockwise, the mean orientation of a set of randomly distributed Gabor patches (N = 1, 2, 4, and 8) was rotated from the implicit vertical.

View Article and Find Full Text PDF

In ensemble displays, two principal factors determine the precision with which the mean value of some perceptual attribute, such as size and orientation, can be discriminated: inefficiency and representational noise of each element. Inefficiency is mainly caused by biased inference, or by inattentional (feature) blindness (i.e.

View Article and Find Full Text PDF

In this age of data visualization, it is important to understand our perception of the symbols that are used. For example, does the perceived size of a disc correspond most closely to its area, diameter, circumference, or some other measure? When multiple items are present, this becomes a question of ensemble perception. Here, we compare observers' performance across three different tasks: judgments of (i) the mean diameter, (ii) the total diameter, or (iii) the total area of (N = 1, 2, 3, or 7) test circles compared with a single reference circle.

View Article and Find Full Text PDF

In a bull's-eye acuity task, we asked observers to identify in which direction, to the left or the right, a spot had been displaced from the center of a circle and-after that, in the same trial-to detect which of the two presented circles contained the displaced spot. Replicating our previous findings (Allik, Dzhafarov, & Rauk, 1982), the spatial offset direction identification probability was higher than the probability with which the correct observation interval could be detected. All data were explained by a Thurstonian model, according to which the spatial positions of both spots are projected onto an internal axis of representation as two random numbers, x and y, drawn from a random distribution with a fixed standard deviation ς (final sigma).

View Article and Find Full Text PDF

The perception of ensemble characteristics is often regarded as an antidote to an established bottleneck in focused attention and working memory, both of which appear to be limited in capacity to a few objects only. In order to test the associative law of summation, observers were asked to estimate the mean size of four circles relative to a reference circle. When there was no time to scrutinize each individual circle, observers discriminated the mean size difference identically, irrespective of whether the same summary size increment or decrement was added to or subtracted from the size of only one, two, or all four circles.

View Article and Find Full Text PDF

Our brain is able to automatically detect changes in sensory stimulation, including in vision. A large variety of changes of features in stimulation elicit a deviance-reflecting event-related potential (ERP) component known as the mismatch negativity (MMN). The present study has three main goals: (1) to register vMMN using a rapidly presented stream of schematic faces (neutral, happy, and angry; adapted from Öhman etal.

View Article and Find Full Text PDF

A general explanation for the observer's ability to judge the mean size of simple geometrical figures, such as circles, was advanced. Results indicated that, contrary to what would be predicted by statistical averaging, the precision of mean size perception decreases with the number of judged elements. Since mean size discrimination was insensitive to how total size differences were distributed among individual elements, this suggests that the observer has a limited cognitive access to the size of individual elements pooled together in a compulsory manner before size information reaches awareness.

View Article and Find Full Text PDF

Most theories of the programming of saccadic eye movements (SEM) agree that direction and amplitude are the two basic dimensions that are under control when an intended movement is planned. But they disagree over whether these two basic parameters are specified separately or in conjunction. We measured saccadic reaction time (SRT) in a situation where information about amplitude and direction of the required movement became available at different moments in time.

View Article and Find Full Text PDF