Publications by authors named "Mai Nozaki"

We report the first example of solvent-dependent helix inversion in poly(diphenylacetylene) (PDPA) derivatives. Asymmetrically substituted PDPAs bearing optically active substituents linked through amide bonds formed preferred-handed helical conformations because of the optically active substituents in the pendants, whose helix-senses were inverted upon thermal annealing in polar solvents such as N,N-dimethylformamide and dimethylsulfoxide and in nonpolar solvents such as tetrachloroethane. Unlike the solvent-dependent helix inversion reported for other dynamic helical polymers, the macromolecular helicity induced in the polymer backbone of these PDPAs upon thermal annealing was stably maintained at room temperature, independent of the solvent polarity.

View Article and Find Full Text PDF
Article Synopsis
  • Chirality significantly impacts how molecules behave in biological systems, as even small changes can lead to major differences in functionality.
  • The study introduces a new color-changing indicator that can visibly detect variations in the chirality of chiral amines, with changes observable due to as little as 2% differences in enantiomeric excess (ee).
  • This color indicator utilizes a special polymer that responds to solvent conditions, enabling quick, on-site chirality detection and quantification of ee values, which is especially useful for analyzing drugs and other nonracemic amines.
View Article and Find Full Text PDF

Poly(diphenylacetylene) having optically active anilide pendants (poly-1) were synthesized by the condensation reaction of an optically active carboxylic acid with a key precursor polymer containing amino (-NH) groups, which was prepared by the polymerization of a phthalimide-protected diphenylacetylene monomer using WCl-PhSn as a catalyst, followed by phthalimide deprotection in the resulting polymer using hydrazine monohydrate. Poly-1 formed a preferred-handed helical conformation (h-poly-1) upon thermal annealing in DMF because of chirality of the pendant group. Poly-1 and h-poly-1 showed different chiral recognition abilities from the analogous poly(diphenylacetylene)s, having the corresponding optically active amide pendants, as chiral stationary phases (CSPs) for high-performance liquid chromatography.

View Article and Find Full Text PDF

Symmetrically substituted poly(diphenylacetylene) (PDPA) bearing carboxy pendants was found to fold into a one-handed helix upon thermal annealing with nonracemic amines in water accompanied by chiral amplification of the helicity. The induced right- or left-handed helical PDPA was retained (memorized) after complete removal of the chiral amines, thus producing a one-handed helical circularly polarized luminescent PDPA in a helix-sense-selective manner. The helical PDPA with static helicity memory is tolerant toward modification of carboxy pendants, providing functional PDPAs with an optical activity solely due to macromolecular helicity.

View Article and Find Full Text PDF