NADPH is a redox cofactor that drives the anabolic reactions. Although major NADPH generation reactions have been identified in , some minor reactions have not been identified. In the present study, we explored novel NADPH generation reactions by monitoring the fluorescence dynamics after the addition of carbon sources to starved cells, using a metagenome-derived blue fluorescent protein (mBFP) as an intracellular NADPH reporter.
View Article and Find Full Text PDFPurpose: The anticoagulant effect of warfarin used to treat stroke has been shown to vary with the concomitant use of medications and comorbidity. Concomitant use of antithrombotic drugs and underlying chronic kidney disease (CKD) represent risk factors for bleeding events. We conducted a comprehensive investigation of the background characteristics and concomitant use of drugs to identify the risk factors for warfarin-related bleeding, focusing on renal function.
View Article and Find Full Text PDFChromosome condensation is a hallmark of mitosis in eukaryotes and is a prerequisite for faithful segregation of genetic material to daughter cells. Here we show that condensin, which is essential for assembling condensed chromosomes, helps to preclude the detrimental effects of gene transcription on mitotic condensation. ChIP-seq profiling reveals that the fission yeast condensin preferentially binds to active protein-coding genes in a transcription-dependent manner during mitosis.
View Article and Find Full Text PDFSister chromatid cohesion is mediated by cohesin and is essential for accurate chromosome segregation. The cohesin subunits SMC1, SMC3, and Rad21 form a tripartite ring within which sister chromatids are thought to be entrapped. This event requires the acetylation of SMC3 and the association of sororin with cohesin by the acetyltransferases Esco1 and Esco2 in humans, but the functional mechanisms of these acetyltransferases remain elusive.
View Article and Find Full Text PDFThe effects of six lipophilic vitamins: tretinoin (ATRA), vitamin D(3) (VD(3)), VE, VK(1), VK(3), and VK(5) on cell proliferation and apoptosis in human A375 melanoma cells were investigated. VD(3), VK(3), and VK(5) were found to inhibit cell proliferation significantly at concentration ranges of 10-100 μmol/L (p<0.01), while the other vitamins did not show inhibitory effects at 100 μmol/L.
View Article and Find Full Text PDF