Oligonucleotides are short nucleic acids that serve as one of the most promising classes of drug modality. However, attempts to establish a physicochemical evaluation platform of oligonucleotides for acquiring a comprehensive view of their properties have been limited. As the chemical stability and the efficacy as well as the solution properties at a high concentration should be related to their higher-order structure and intra-/intermolecular interactions, their detailed understanding enables effective formulation development.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
July 2020
Chronic obstructive pulmonary disease (COPD) is a major cause of death worldwide. However, no drugs can regenerate lung tissue in COPD patients, and differentiation-inducing drugs that can effectively treat damaged alveoli are needed. In addition, the presence of systemic comorbidities is also considered problematic.
View Article and Find Full Text PDFThe evaluation of subvisible particles, including protein aggregates, in therapeutic protein products has been of great interest for both pharmaceutical manufacturers and regulatory agencies. To date, the flow imaging (FI) method has emerged as a powerful tool instead of light obscuration (LO) due to the fact that (1) protein aggregates contain highly transparent particles and thereby escape detection by LO and (2) FI provides detailed morphological characteristics of subvisible particles. However, the FI method has not yet been standardized nor listed in any compendium.
View Article and Find Full Text PDFChronic obstructive pulmonary disease (COPD) is an intractable pulmonary disease that causes widespread and irreversible alveolar collapse. Although COPD occurs worldwide, only symptomatic therapy is currently available. Our objective is the development of therapeutic agents to eradicate COPD.
View Article and Find Full Text PDFChronic obstructive pulmonary disease (COPD) is a progressive respiratory disease with several causes, including smoking, and no curative therapeutic agent is available, particularly for destructive alveolar lesions. In this study, we investigated the differentiation-inducing effect on undifferentiated lung cells (Calu-6) and the alveolar regenerative effect of the active vitamin 1,25-dihydroxy vitamin D3 (VD3) with the ultimate goal of developing a novel curative drug for COPD. First, the differentiation-inducing effect of VD3 on Calu-6 cells was evaluated.
View Article and Find Full Text PDF