Metabolomics is the study of small molecules, called metabolites, of a cell, tissue or organism. It is of particular interest as endogenous metabolites represent the phenotype resulting from gene expression. A major challenge in metabolomics research is the structural identification of unknown biochemical compounds in complex biofluids.
View Article and Find Full Text PDFMetabolic pathways are composed of a series of chemical reactions occurring within a cell. In each pathway, enzymes catalyze the conversion of substrates into structurally similar products. Thus, structural similarity provides a potential means for mapping newly identified biochemical compounds to known metabolic pathways.
View Article and Find Full Text PDFCurrent methods of structure identification in mass-spectrometry-based nontargeted metabolomics rely on matching experimentally determined features of an unknown compound to those of candidate compounds contained in biochemical databases. A major limitation of this approach is the relatively small number of compounds currently included in these databases. If the correct structure is not present in a database, it cannot be identified, and if it cannot be identified, it cannot be included in a database.
View Article and Find Full Text PDFThe structural identification of unknown biochemical compounds in complex biofluids continues to be a major challenge in metabolomics research. Using LC/MS, there are currently two major options for solving this problem: searching small biochemical databases, which often do not contain the unknown of interest or searching large chemical databases which include large numbers of nonbiochemical compounds. Searching larger chemical databases (larger chemical space) increases the odds of identifying an unknown biochemical compound, but only if nonbiochemical structures can be eliminated from consideration.
View Article and Find Full Text PDFThe identification of compounds in complex mixtures remains challenging despite recent advances in analytical techniques. At present, no single method can detect and quantify the vast array of compounds that might be of potential interest in metabolomics studies. High performance liquid chromatography/mass spectrometry (HPLC/MS) is often considered the analytical method of choice for analysis of biofluids.
View Article and Find Full Text PDFIEEE Int Conf Comput Adv Bio Med Sci
February 2012
Metabolomics is a rapidly growing field studying the small-molecule metabolite profile of a biological organism. Studying metabolism has a potential to contribute to biomedical research as well as drug discovery. One of the current challenges in metabolomics is the identification of unknown metabolites as existing chemical databases are incomplete.
View Article and Find Full Text PDF