Publications by authors named "Mai H Bui"

Dual bromodomain BET inhibitors that bind with similar affinities to the first and second bromodomains across BRD2, BRD3, BRD4, and BRDT have displayed modest activity as monotherapy in clinical trials. Thrombocytopenia, closely followed by symptoms characteristic of gastrointestinal toxicity, have presented as dose-limiting adverse events that may have prevented escalation to higher dose levels required for more robust efficacy. ABBV-744 is a highly selective inhibitor for the second bromodomain of the four BET family proteins.

View Article and Find Full Text PDF

Proteins of the bromodomain and extra-terminal (BET) domain family are epigenetic readers that bind acetylated histones through their bromodomains to regulate gene transcription. Dual-bromodomain BET inhibitors (DbBi) that bind with similar affinities to the first (BD1) and second (BD2) bromodomains of BRD2, BRD3, BRD4 and BRDt have displayed modest clinical activity in monotherapy cancer trials. A reduced number of thrombocytes in the blood (thrombocytopenia) as well as symptoms of gastrointestinal toxicity are dose-limiting adverse events for some types of DbBi.

View Article and Find Full Text PDF

Novel conformationally constrained BET bromodomain inhibitors have been developed. These inhibitors were optimized in two similar, yet distinct chemical series, the 6-methyl-1H-pyrrolo[2,3-c]pyridin-7(6H)-ones (A) and the 1-methyl-1H-pyrrolo[2,3-c]pyridin-7(6H)-ones (B). Each series demonstrated excellent activity in binding and cellular assays, and lead compounds from each series demonstrated significant efficacy in in vivo tumor xenograft models.

View Article and Find Full Text PDF

The development of bromodomain and extraterminal domain (BET) bromodomain inhibitors and their examination in clinical studies, particularly in oncology settings, has garnered substantial recent interest. An effort to generate novel BET bromodomain inhibitors with excellent potency and drug metabolism and pharmacokinetics (DMPK) properties was initiated based upon elaboration of a simple pyridone core. Efforts to develop a bidentate interaction with a critical asparagine residue resulted in the incorporation of a pyrrolopyridone core, which improved potency by 9-19-fold.

View Article and Find Full Text PDF

Cancer cells have an unusually high requirement for the central and intermediary metabolite nicotinamide adenine dinucleotide (NAD), and NAD depletion ultimately results in cell death. The rate limiting step within the NAD salvage pathway required for converting nicotinamide to NAD is catalyzed by nicotinamide phosphoribosyltransferase (NAMPT). Targeting NAMPT has been investigated as an anti-cancer strategy, and several highly selective small molecule inhibitors have been found to potently inhibit NAMPT in cancer cells, resulting in NAD depletion and cytotoxicity.

View Article and Find Full Text PDF

ABBV-075 is a potent and selective BET family bromodomain inhibitor that recently entered phase I clinical trials. Comprehensive preclinical characterization of ABBV-075 demonstrated broad activity across cell lines and tumor models, representing a variety of hematologic malignancies and solid tumor indications. In most cancer cell lines derived from solid tumors, ABBV-075 triggers prominent G cell-cycle arrest without extensive apoptosis.

View Article and Find Full Text PDF

ABT-348 [1-(4-(4-amino-7-(1-(2-hydroxyethyl)-1H-pyrazol-4-yl)thieno[3,2-c]pyridin-3-yl)phenyl)-3-(3-fluorophenyl)urea] is a novel ATP-competitive multitargeted kinase inhibitor with nanomolar potency (IC(50)) for inhibiting binding and cellular autophosphorylation of Aurora B (7 and 13 nM), C (1 and 13 nM), and A (120 and 189 nM). Cellular activity against Aurora B is reflected by inhibition of phosphorylation of histone H3, induction of polyploidy, and inhibition of proliferation of a variety of leukemia, lymphoma, and solid tumor cell lines (IC(50) = 0.3-21 nM).

View Article and Find Full Text PDF

The majority of cancer therapeutics induces DNA damage to kill cells. Normal proliferating cells undergo cell cycle arrest in response to DNA damage, thus allowing DNA repair to protect the genome. DNA damage induced cell cycle arrest depends on an evolutionarily conserved signal transduction network in which the Chk1 kinase plays a critical role.

View Article and Find Full Text PDF

A series of 5-methoxy- and 5-hydroxy-6-fluoro-1,8-naphthyridone-3-carboxylic acid derivatives were prepared and evaluated for cell-free bacterial protein synthesis inhibition and whole cell antibacterial activity. When compared to the analogous 5-hydrogen compounds, the presence of the 5-OH group negatively affects biochemical potency. However, a tolerance of the 5-methoxy group is indicated.

View Article and Find Full Text PDF

A series of novel 6-O-arylpropargyl-9-oxime-ketolides was synthesized and evaluated against various pathogens. These new compounds show promising in vitro antibacterial potency and in vivo efficacy against macrolide resistant strains.

View Article and Find Full Text PDF

The parallel synthesis and antibacterial activity of 5-hydroxy[1,2,5] oxadiazolo[3,4-b]pyrazines is reported. The compounds were synthesized by condensing diaminofurazan with alpha-keto acids to give a variety of aryl-substituted analogues. Halogenated phenyl groups at C-6 give rise to the greatest Haemophilus influenzae antibacterial activity.

View Article and Find Full Text PDF

Community-acquired methicillin-resistant Staphylococcus aureus (MRSA) infections are increasing. Since most published data are on nosocomial MRSA, our goal was to identify the antimicrobial susceptibility profile and resistance mechanisms of pretreatment MRSA isolates obtained from adult subjects participating in recent clinical treatment trials of community respiratory infections. Out of 465 S.

View Article and Find Full Text PDF