Publications by authors named "Mai Furumiya"

Myricetin is a flavonoid that has recently been suggested to induce sustained inhibition of proton-coupled folate transporter (PCFT/SLC46A1), which operates for intestinal folate uptake. The present study was conducted to characterize the inhibitory effect in more detail, using human PCFT stably expressed in Madin-Darby canine kidney II cells, to gain information to cope with problems potentially arising from that. The kinetics of saturable folate transport was first assessed in the absence of myricetin in the cells pretreated with the flavonoid for 60 min.

View Article and Find Full Text PDF

Myricetin is a flavonoid that has recently been suggested to interfere with the intestinal folate transport system. To examine that possibility, focusing on its sustained inhibitory effect on proton-coupled folate transporter (PCFT), the uptake of folate was examined in Caco-2 cells, in which PCFT is known to be in operation, in the absence of myricetin in the medium during uptake period after preincubation of the cells with the flavonoid (100 μM) for 1 h. This pretreatment induced an extensive and sustained reduction in the carrier-mediated component of folate uptake, which was attributable to a reduction in the maximum transport rate (Vmax).

View Article and Find Full Text PDF

Myricetin is a flavonoid that has recently been suggested to interfere with the intestinal folate transport system. The present study was conducted to examine that possibility, focusing on its inhibitory effect on proton-coupled folate transporter (PCFT) as the molecular entity of the transport system. The uptake transport of folate was first examined in the Caco-2 cell as an intestinal epithelial cell model, and its carrier-mediated component, of which the Michaelis constant (Km) was 0.

View Article and Find Full Text PDF

Proton-coupled folate transporter (PCFT), which is responsible for the intestinal uptake of folates and analogs, is expressed only in the proximal region in the small intestine. The present study was to examine its transcriptional regulation, which may be involved in such a unique expression profile and potentially in its alteration, using dual-luciferase reporter assays in human embryonic kidney (HEK) 293 cells. The luciferase activity derived from the reporter construct containing the 5'-flanking sequence of -1695/+96 of the human PCFT gene was enhanced most extensively by the introduction of Krüppel-like factor 4 (KLF4).

View Article and Find Full Text PDF