Human-induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells (iMSCs) represent a promising and renewable cell source for therapeutic applications. A systematic evaluation of the immunological properties and engraftment potential of iMSCs generated from urine-derived iPSCs is lacking, which has impeded their broader application. In this study, we differentiated urine-derived iPSCs into iMSCs and assessed their fundamental MSC characteristics, immunogenicity, immunomodulatory capacity and in vivo engraftment.
View Article and Find Full Text PDFBackground: Prior research on the digital divide has documented substantial racial inequality in using web-based health resources. The recent COVID-19 pandemic led to accelerated mass digitization, raising alarms that underprivileged racial minority groups are left further behind. However, it is unclear to what extent the use of health information and communications technology by underprivileged racial minority groups is affected.
View Article and Find Full Text PDFSolid electrolyte interphase (SEI) on a Li anode is critical to the interface stability and cycle life of Li metal batteries. On the one hand, components of SEI with the passivation effect can effectively hinder the interfacial side reactions to promote long-term cycling stability. On the other hand, SEI species that exhibit the active site effect can reduce the Li nucleation barrier and guide Li deposition homogeneously.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is a devastating autosomal recessive motor neuron disease associated with mutations in the survival motor neuron 1 () gene, the leading genetic cause of infant mortality. A nearly identical copy gene () is retained in almost all patients with SMA. However, fails to prevent disease development because of its alternative splicing, leading to a lack of exon 7 in the majority of transcripts and yielding an unstable truncated protein.
View Article and Find Full Text PDFBiosensors (Basel)
April 2022
Spinal muscular atrophy (SMA) is the main genetic cause of infant death. In >95% of the patients with SMA, the disease is caused by a single hotspot pathogenic mutation: homozygous deletion of exon 7 of the survival motor neuron 1 gene (SMN1). Recently, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein (Cas)-based assays have been developed as a promising new option for nucleic acid detection.
View Article and Find Full Text PDFHemophilia B (HB) is an X-linked recessive bleeding disorder, caused by gene deficiency. Gene therapy combined with the CRISPR/Cas9 technology offers a potential cure for hemophilia B. Now the Cas9 nickase (Cas9n) shows a great advantage in reducing off-target effect compared with wild-type Cas9.
View Article and Find Full Text PDFReporter embryonic stem cell (ESC) lines with tissue-specific reporter genes may contribute to optimizing the differentiation conditions in vitro as well as trafficking transplanted cells in vivo. To optimize and monitor endothelial cell (EC) differentiation specifically, here we targeted the enhanced green fluorescent protein (EGFP) reporter gene at the junction of 5'UTR and exon2 of the endothelial specific marker gene CD144 using TALENs in human ESCs (H9) to generate a EGFP-CD144-reporter ESC line. The reporter cells expressed EGFP and CD144 increasingly and specifically without unexpected effects during the EC differentiation.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is a kind of neuromuscular disease characterized by progressive motor neuron loss in the spinal cord. It is caused by mutations in the survival motor neuron 1 (SMN1) gene. SMN1 has a paralogous gene, survival motor neuron 2 (SMN2), in humans that is present in almost all SMA patients.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is primarily a neurodegenerative disease caused by the homozygous deletion of the survival motor neuron 1 (SMN1) gene, thereby reducing SMN protein expression. Mesenchymal stem cells (MSCs) have been implicated in the treatment of SMA. In the present study, we overexpressed exogenous SMN1 at the ribosomal DNA (rDNA) locus of induced pluripotent stem cells (iPSCs) generated from a SMA patient using an rDNA-targeting vector.
View Article and Find Full Text PDFInduced pluripotent stem cells (iPSCs) are a promising source of mesenchymal stem cells (MSCs) for clinical applications. In this study, we transformed human iPSCs using a non-viral vector carrying the IL24 transgene pHrn-IL24. PCR and southern blotting confirmed IL24 integration into the rDNA loci in four of 68 iPSC clones.
View Article and Find Full Text PDFBiochem Biophys Res Commun
March 2016
Hemophilia A (HA) is a monogenic disease due to lack of the clotting factor VIII (FVIII). This deficiency may lead to spontaneous joint hemorrhages or life-threatening bleeding but there is no cure for HA until very recently. In this study, we derived induced pluripotent stem cells (iPSCs) from patients with severe HA and used transcription activator-like effector nickases (TALENickases) to target the factor VIII gene (F8) at the multicopy ribosomal DNA (rDNA) locus in HA-iPSCs, aiming to rescue the shortage of FVIII protein.
View Article and Find Full Text PDFNearly half of severe Hemophilia A (HA) cases are caused by F8 intron 22 inversion (Inv22). This 0.6-Mb inversion splits the 186-kb F8 into two parts with opposite transcription directions.
View Article and Find Full Text PDFBiochem Biophys Res Commun
March 2014
Although targeted gene addition could be stimulated strikingly by a DNA double strand break (DSB) created by either zinc finger nucleases (ZFNs) or TALE nucleases (TALENs), the DSBs are really mutagenic and toxic to human cells. As a compromised solution, DNA single-strand break (SSB) or nick has been reported to mediate high efficient gene addition but with marked reduction of random mutagenesis. We previously demonstrated effective targeted gene addition at the human multicopy ribosomal DNA (rDNA) locus, a genomic safe harbor for the transgene with therapeutic potential.
View Article and Find Full Text PDFBackground: Genetic modification is a prerequisite to realizing the full potential of human embryonic stem cells (hESCs) in human genetic research and regenerative medicine. Unfortunately, the random integration methods that have been the primary techniques used keep creating problems, and the primary alternative method, gene targeting, has been effective in manipulating mouse embryonic stem cells (mESCs) but poorly in hESCs.
Methodology/principal Findings: Human ribosomal DNA (rDNA) repeats are clustered on the short arm of acrocentric chromosomes.