Publications by authors named "Mai Abdusamad"

SPOP is a Cul3 substrate adaptor responsible for the degradation of many proteins related to cell growth and proliferation. Because mutation or misregulation of SPOP drives cancer progression, understanding the suite of SPOP substrates is important to understanding the regulation of cell proliferation. Here, we identify Nup153, a component of the nuclear basket of the nuclear pore complex, as a novel substrate of SPOP.

View Article and Find Full Text PDF

Despite advances in precision medicine, the clinical prospects for patients with ovarian and uterine cancers have not substantially improved. Here, we analyzed genome-scale CRISPR-Cas9 loss-of-function screens across 851 human cancer cell lines and found that frequent overexpression of SLC34A2-encoding a phosphate importer-is correlated with sensitivity to loss of the phosphate exporter XPR1, both in vitro and in vivo. In patient-derived tumor samples, we observed frequent PAX8-dependent overexpression of SLC34A2, XPR1 copy number amplifications and XPR1 messenger RNA overexpression.

View Article and Find Full Text PDF

Copper is an essential cofactor for all organisms, and yet it becomes toxic if concentrations exceed a threshold maintained by evolutionarily conserved homeostatic mechanisms. How excess copper induces cell death, however, is unknown. Here, we show in human cells that copper-dependent, regulated cell death is distinct from known death mechanisms and is dependent on mitochondrial respiration.

View Article and Find Full Text PDF
Article Synopsis
  • * The study identifies NXT1 as a selective and rapidly lethal target in neuroblastoma, showing that it forms a crucial component of mRNA export alongside NXF1.
  • * A novel mechanism of synthetic lethality is proposed between NXT1 and NXT2, suggesting a therapeutic strategy to selectively eliminate NXF1 in tumor cells while minimizing toxicity to normal cells.
View Article and Find Full Text PDF
Article Synopsis
  • - Undergraduate students at UCLA conducted research using RNA interference (RNAi) and fluorescent proteins to pinpoint genes crucial for blood cell development in fruit flies, screening around 3,500 genes and finding 137 that affected hematopoiesis.
  • - By targeting RNAi to different cell types involved in blood cell maturation, the researchers identified specific gene subsets that either facilitate or inhibit this process, revealing new insights into gene functions related to RNA processing and vesicular trafficking.
  • - The CURE (Course-Based Undergraduate Research Experience) model not only enhanced students' understanding and skills in science but also improved retention rates in STEM fields, demonstrating the value of hands-on research in education.
View Article and Find Full Text PDF

Selective targeting of aneuploid cells is an attractive strategy for cancer treatment. However, it is unclear whether aneuploidy generates any clinically relevant vulnerabilities in cancer cells. Here we mapped the aneuploidy landscapes of about 1,000 human cancer cell lines, and analysed genetic and chemical perturbation screens to identify cellular vulnerabilities associated with aneuploidy.

View Article and Find Full Text PDF

Few therapies target the loss of tumor suppressor genes in cancer. We examine CRISPR-SpCas9 and RNA-interference loss-of-function screens to identify new therapeutic targets associated with genomic loss of tumor suppressor genes. The endosomal sorting complexes required for transport (ESCRT) ATPases VPS4A and VPS4B score as strong synthetic lethal dependencies.

View Article and Find Full Text PDF

Somatic mutations that perturb Parkin ubiquitin ligase activity and the misregulation of iron homeostasis have both been linked to Parkinson's disease. Lactotransferrin (LTF) is a member of the family of transferrin iron binding proteins that regulate iron homeostasis, and increased levels of LTF and its receptor have been observed in neurodegenerative disorders like Parkinson's disease. Here, we report that Parkin binds to LTF and ubiquitylates LTF to influence iron homeostasis.

View Article and Find Full Text PDF

Cas9 is commonly introduced into cell lines to enable CRISPR-Cas9-mediated genome editing. Here, we studied the genetic and transcriptional consequences of Cas9 expression itself. Gene expression profiling of 165 pairs of human cancer cell lines and their Cas9-expressing derivatives revealed upregulation of the p53 pathway upon introduction of Cas9, specifically in wild-type TP53 (TP53-WT) cell lines.

View Article and Find Full Text PDF