3D printing of a flexible polyurethane elastomer is highly demandable for its potential to revolutionize industries ranging from footwear to soft robotics thanks to its exceptional design flexibility and elasticity performance. Nevertheless, conventional methods like fused deposition modeling (FDM) and vat photopolymerization (VPP) polyurethane 3D printing typically limit material options to thermoplastic or photocurable polyurethanes. In this research, a water-borne polyurethane ink was synthesized for direct ink writing (DIW) 3D printing through the incorporation of cellulose nanofibrils (CNFs), enabling direct printing of complex, monolithic elastomeric structures at room temperature that can maintain the designed structure.
View Article and Find Full Text PDFStructured liquids are emerging functional soft materials that combine liquid flowability with solid-like structural stability and spatial organization. Here, we delve into the chemistry and underlying principles of structured liquids, ranging from nanoparticle surfactants (NPSs) to supramolecular assemblies and interfacial jamming. We then highlight recent advancements related to the design of intricate all-liquid 3D structures and examine their reconfigurability.
View Article and Find Full Text PDFMicrobial cellulose stands out for its exceptional characteristics in the form of biofilms formed by highly interlocked fibrils, namely, bacterial nanocellulose (BNC). Concurrently, bio-based aerogels are finding uses in innovative materials owing to their lightweight, high surface area, physical, mechanical, and thermal properties. In particular, bio-based aerogels based on BNC offer significant opportunities as alternatives to synthetic or mineral counterparts.
View Article and Find Full Text PDFChitin nanofibrils (ChNF) sourced from discarded marine biomass are shown as effective stabilizers of carbon nanomaterials in aqueous media. Such stabilization is evaluated for carbon nanotubes (CNT) considering spatial and temporal perspectives by using experimental (small-angle X-ray scattering, among others) and theoretical (atomistic simulation) approaches. We reveal that the coassembly of ChNF and CNT is governed by hydrophobic interactions, while electrostatic repulsion drives the colloidal stabilization of the hybrid ChNF/CNT system.
View Article and Find Full Text PDFThis work focuses on multi-stimuli-responsive materials with distinctive abilities, that is, color-changing and shape-memory. Using metallic composite yarns and polymeric/thermochromic microcapsule composite fibers, processed via a melt-spinning technique, an electrothermally multi-responsive fabric is woven. The resulting smart-fabric transfers from a predefined structure to an original shape while changing color upon heating or applying an electric field, making it appealing for advanced applications.
View Article and Find Full Text PDFHerein, a cellulose-based aerogel, containing graphene-oxide (GO), chemically-reduced-GO (CrGO), and thermally-reduced-GO (TrGO), has been facile prepared to investigate mechanical and electrical properties as well as meso-(nano)structure features. The effect of reduction processes on the cellulose/GO aerogel was tracked by FT-IR spectroscopy and EDS analysis, confirming the accomplishment of reduction processes-carbon/oxygen (C/O) ratio asserted it evidently. The formation of porous structure has been declared using SEM micrographs, and then, Mercury-porosimetry and BET tests revealed meso-(nano)structure of aerogels.
View Article and Find Full Text PDFThis study aims to induce antibacterial and superhydrophobic properties on the surface of thermoplastic polyurethane (TPU) sheets via an improved phase separation process through application of polyvinyl chloride (PVC) thin films. Porous PVC thin films were produced using different amounts of ethanol as nonsolvent. However, the created porosity was not sufficient to achieve superhydrophobicity.
View Article and Find Full Text PDF