Objectives: Low birth weight (LBW) is a global concern associated with fetal and neonatal mortality as well as adverse consequences such as intellectual disability, impaired cognitive development, and chronic diseases in adulthood. Numerous factors contribute to LBW and vary based on the region. The main objectives of this study were to compare four machine learning classifiers in the prediction of LBW and to determine the most important factors related to this phenomenon in Hamadan, Iran.
View Article and Find Full Text PDFBackground: Schizophrenia is a chronic, severe, and debilitating mental disorder always considered one of the recurrent psychiatric diseases. This study aimed to use penalized count regression models to determine factors associated with the number of rehospitalizations of schizophrenia disorder.
Methods: This retrospective cohort study was performed on 413 schizophrenic patients who had been referred to the Sina (Farshchian) Educational and Medical Center in Hamadan, Iran, between March 2011 and March 2019.
Background: College students are at an increased risk of psychiatric distress. So, identifying its important correlates using more reliable statistical models, instead of inefficient traditional variable selection methods like stepwise regression, is of great importance. The objective of this study was to investigate correlates of psychiatric distress among college students in Iran; using group smoothly clipped absolute deviation method (SCAD).
View Article and Find Full Text PDF