J Mech Behav Biomed Mater
December 2024
Zinc is a promising material for biodegradable scaffolds due to its biocompatible nature and suitable degradation rate. However, its low mechanical strength limits its use in load-bearing applications. This study aims to address this challenge by optimizing the process parameters of pure zinc using laser-based powder bed fusion and designing zinc scaffolds with tailored structures.
View Article and Find Full Text PDFRapid hemostasis and wound healing are crucial in emergency trauma situations for saving patients' lives. Traditional hemostatic materials often have drawbacks such as slow hemostasis and susceptibility to post-hemostasis bacterial infections. Therefore, there is an urgent need for advanced wound dressing materials that can provide both rapid hemostasis and antimicrobial properties.
View Article and Find Full Text PDFEffective treatment of infected bone defects resulting from multi-drug resistant bacteria (MDR) has emerged as a significant clinical challenge, highlighting the pressing demand for potent antibacterial bone graft substitutes. Mesoporous nanoparticles have been introduced as a promising class of biomaterials offering significant properties for treating bone infections. Herein, we synthesize antibacterial mesoporous hydroxyapatite substituted with zinc and gallium (Zn-Ga:mHA) nanoparticles using a facile sol-gel method.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2024
Currently, postoperative infection is a significant challenge in bone and dental surgical procedures, demanding the exploration of innovative approaches due to the prevalence of antibiotic-resistant bacteria. This study aims to develop a strategy for controlled and smart antibiotic release while accelerating osteogenesis to expedite bone healing. In this regard, temperature-responsive doxycycline (DOX) imprinted bioglass microspheres (BGMs) were synthesized.
View Article and Find Full Text PDFRecently, numerous studies have been conducted on renewable polymers derived from different natural sources, exploring their suitability for diverse biomedical applications. Lignin as one of the main components of lignocellulosic has garnered significant attention as a promising alternative to petroleum-based polymers. This interest is primarily due to its cost-effectiveness, biocompatibility, eco-friendly nature, as well as its antioxidant and antimicrobial properties.
View Article and Find Full Text PDFRecently, insufficient angiogenesis and prolonged inflammation are crucial challenges of chronic skin wound healing. The sustained release of L-Arginine (L-Arg) and nitric oxide (NO) production can control immune responses, improve angiogenesis, enhance re-epithelialization, and accelerate wound healing. Here, we aim to improve wound healing via the controlled release of NO and L-Arg from poly (β-amino ester) (PβAE).
View Article and Find Full Text PDFOne of the most critical issues concerning orthopedic implants is the risk of chronic inflammation, which poses a threat to the bone healing process. Osteo-immunomodulation plays a pivotal role in implant technology by influencing proinflammatory and anti-inflammatory responses, ultimately promoting bone healing. This study aims to investigate the morphology-dependent osteo-immunomodulatory properties of a hydroxyapatite (HA)/plasma electrolytic oxidation (PEO)-coated WE43 alloy.
View Article and Find Full Text PDFHere we develop and characterize a dual-cross-linked pH-responsive hydrogel based on the carboxyethyl chitosan-oxidized sodium alginate (CAO) containing silver nanoparticles (Ag NPs) functionalized with tannic acid/red cabbage (ATR). This hybrid hydrogel is formed via covalent and non-covalent cross-linking. The adhesive strength measured in contact with cow skin and compression strength is measured more than 3 times higher than that of CAO.
View Article and Find Full Text PDFDuring the last decade, pH-sensitive biomaterials containing antibacterial agents have grown exponentially in soft tissue engineering. The aim of this study is to synthesize a biodegradable pH sensitive and antibacterial hydrogel with adjustable mechanical and physical properties for soft tissue engineering. This biodegradable copolymer hydrogel was made of Poly-L-Arginine methacrylate (Poly-L-ArgMA) and different poly (β- amino ester) (PβAE) polymers.
View Article and Find Full Text PDFA novel gel-based wearable sensor with environment resistance (anti-freezing and anti-drying), excellent strength, high sensitivity and self-adhesion was prepared by introducing biomass materials including both lignin and cellulose. The introduction of lignin decorated CNC (L-CNC) to the polymer network acted as nano-fillers to improve the gel's mechanical with high tensile strength (72 KPa at 25 °C, 77 KPa at -20 °C), excellent stretchability (803 % at 25 °C, 722 % at -20 °C). The abundant catechol groups formed in the process of dynamic redox reaction between lignin and ammonium persulfate endowed the gel with robust tissue adhesiveness.
View Article and Find Full Text PDFThe main challenge of extrusion 3D bioprinting is the development of bioinks with the desired rheological and mechanical performance and biocompatibility to create complex and patient-specific scaffolds in a repeatable and accurate manner. This study aims to introduce non-synthetic bioinks based on alginate (Alg) incorporated with various concentrations of silk nanofibrils (SNF, 1, 2, and 3 wt.%) and optimize their properties for soft tissue engineering.
View Article and Find Full Text PDFThe study aims to develop a novel dentin extracellular matrix (dECM) loaded gelatin methacrylate (GelMA)-5 wt% bioactive glass (BG) (Gel-BG) hydrogel for dental pulp regeneration. We investigate the role of dECM content (2.5, 5, and 10 wt%) on the physicochemical characteristics and biological responses of Gel-BG hydrogel in contact with stem cells isolated from human exfoliated deciduous teeth (SHED).
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2023
Despite recent advances in bone adhesives applied for full median sternotomy, the regeneration of bone defects has remained challenging since the healing process is hampered by poor adhesiveness, limited bioactivity, and lack of antibacterial functions. Bioinspired adhesives by marine organisms provide a novel concept to circumvent these problems. Herein, a dual cross-link strategy is employed in designing a multifaceted bioinspired adhesive consisting of a catechol amine-functionalized hyperbranched polymer (polydopamine--acrylate, PDA), bredigite (BR) nanoparticles, and Fe ions.
View Article and Find Full Text PDFThe valorization of organosolv pretreatment (OP) is a required approach to the industrialization of the current enzyme-mediated lignocellulosic biorefinery. Recent literature has demonstrated that the solvolysis happening in the OP can modify the soluble components into value-added active compounds, namely organosolv modified lignin (OML) and organosolv modified sugars (OMSs), in addition to protecting them against excessive degradation. Among them, the OML is coincidental with the "lignin-first" strategy that should render a highly reactive lignin enriched with β-O-4 linkages and less condensed structure by organosolv grafting, which is desirable for the transformation into phenolic compounds.
View Article and Find Full Text PDFPeriodontitis is a common inflammatory disease in dentistry that may lead to tooth loss and aesthetic problems. Periodontal tissue has a sophisticated architecture including four sections of alveolar bone, cementum, gingiva, and periodontal ligament fiber; all these four can be damaged during periodontitis. Thus, for whole periodontal regeneration, it is important to form both hard and soft tissue structures simultaneously on the tooth root surface without forming junctional epithelium and ankylosis.
View Article and Find Full Text PDFImplant-related infection is one of the main challenges in periodontal diseases. According to the zwitterionic properties of keratin, we aim to develop guided bone regeneration (GBR) membrane with antibacterial and bioactivity properties using a keratin coating. In this study, electrospun silk fibroin (SF)-Laponite (LAP) fibrous membranes were developed as GBR membranes, and keratin extracted from sheep wool was electrosprayed on them.
View Article and Find Full Text PDFIn tissue engineering, three-dimensional (3D) printing is an emerging approach to producing functioning tissue constructs to repair wounds and repair or replace sick tissue/organs. It allows for precise control of materials and other components in the tissue constructs in an automated way, potentially permitting great throughput production. An ink made using one or multiple biomaterials can be 3D printed into tissue constructs by the printing process; though promising in tissue engineering, the printed constructs have also been reported to have the ability to lead to the emergence of unforeseen illnesses and failure due to biomaterial-related infections.
View Article and Find Full Text PDFRecently, postoperative bone infections have been one of the most crucial challenges for surgeons. This study aims to synergistically promote antibacterial and osteoconductive properties of hydroxyapatite (HAp) nanoparticles through binary doping of Zn and Ga ions (Zn-Ga:HAp). Zn-Ga:HAp nanopowders with spherical morphology and homogeneous size are synthesized using a simple sol-gel method.
View Article and Find Full Text PDFWith the advent of "intelligent" materials, the design of smart bioadhesives responding to chemical, physical, or biological stimuli has been widely developed in biomedical applications to minimize the risk of wounds reopening, chronic pain, and inflammation. Intelligent bioadhesives are free-flowing liquid solutions passing through a phase shift in the physiological environment due to stimuli such as light, temperature, pH, and electric field. They possess great merits, such as ease to access and the ability to sustained release as well as the spatial transfer of a biomolecule with reduced side effects.
View Article and Find Full Text PDFImplantable cardiac patches and injectable hydrogels are among the most promising therapies for cardiac tissue regeneration following myocardial infarction. Incorporating electrical conductivity into these patches and hydrogels is found to be an efficient method to improve cardiac tissue function. Conductive nanomaterials such as carbon nanotube, graphene oxide, gold nanorod, as well as conductive polymers such as polyaniline, polypyrrole, and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate are appealing because they possess the electroconductive properties of semiconductors with ease of processing and have potential to restore electrical signaling propagation through the infarct area.
View Article and Find Full Text PDFWound biofilms represent a particularly challenging problem in modern medicine. They are increasingly antibiotic resistant and can prevent the healing of chronic wounds. However, current treatment and diagnostic options are hampered by the complexity of the biofilm environment.
View Article and Find Full Text PDF