Mixed-cation and mixed-halide lead halide perovskites show great potential for their application in photovoltaics. Many of the high-performance compositions are made of cesium, formamidinium, lead, iodine, and bromine. However, incorporating bromine in iodine-rich compositions and its effects on the thermal stability of the perovskite structure has not been thoroughly studied.
View Article and Find Full Text PDFThe knowledge of minority and majority charge carrier properties enables controlling the performance of solar cells, transistors, detectors, sensors, and LEDs. Here, we developed the constant light induced magneto transport method which resolves electron and hole mobility, lifetime, diffusion coefficient and length, and quasi-Fermi level splitting. We demonstrate the implication of the constant light induced magneto transport for silicon and metal halide perovskite films.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2023
Moving toward a future of efficient, accessible, and less carbon-reliant energy devices has been at the forefront of energy research innovations for the past 30 years. Metal-halide perovskite (MHP) thin films have gained significant attention due to their flexibility of device applications and tunable capabilities for improving power conversion efficiency. Serving as a gateway to optimize device performance, consideration must be given to chemical synthesis processing techniques.
View Article and Find Full Text PDFUnderlying the rapidly increasing photovoltaic efficiency and stability of metal halide perovskites (MHPs) is the advancement in the understanding of the microstructure of polycrystalline MHP thin film. Over the past decade, intense efforts have been aimed at understanding the effect of microstructures on MHP properties, including chemical heterogeneity, strain disorder, phase impurity, etc. It has been found that grain and grain boundary (GB) are tightly related to lots of microscale and nanoscale behavior in MHP thin films.
View Article and Find Full Text PDFElectronic transport and hysteresis in metal halide perovskites (MHPs) are key to the applications in photovoltaics, light emitting devices, and light and chemical sensors. These phenomena are strongly affected by the materials microstructure including grain boundaries, ferroic domain walls, and secondary phase inclusions. Here, we demonstrate an active machine learning framework for "driving" an automated scanning probe microscope (SPM) to discover the microstructures responsible for specific aspects of transport behavior in MHPs.
View Article and Find Full Text PDFM-STAR is a next generation polarized neutron reflectometer with advanced capabilities. A new focusing guide concept is optimized for samples with dimensions down to a millimeter range. A proposed hybrid pulse-skipping chopper will enable experiments at constant geometry at one incident angle in a broad range of wavevector transfer Q up to 0.
View Article and Find Full Text PDFThe multiple quantum well structure of a quasi-two-dimensional (quasi-2D) perovskite leads to nonradiative Auger recombination (AR). This is due to high local carrier density in recombination centers, although the radiative recombination is improved by efficient energy transfer. In this study, we suppress the AR by introducing phenethylammonium acetate (PEAAc) into the quasi-2D PEACsPbBr perovskite.
View Article and Find Full Text PDFDual γ/neutron radiation sensors are a critical component of the nuclear security mission to prevent the proliferation of a special nuclear material (SNM). While high-performing semiconductors such as high purity germanium (HPGe) and CdZnTe (CZT) already exist in the nuclear security enterprise, their high cost and/or logistical burdens make widespread deployment difficult to achieve. Metal lead halide perovskites (MHPs) have attracted interest in recent years to address this challenge.
View Article and Find Full Text PDFComplete surface passivation of colloidal quantum dots (CQDs) and their strong electronic coupling are key factors toward high-performance CQD-based photovoltaics (CQDPVs). Also, the CQD matrices must be protected from oxidative environments, such as ambient air and moisture, to guarantee air-stable operation of the CQDPVs. Herein, we devise a complementary and effective approach to reconstruct the oxidized CQD surface using guanidinium and pseudohalide.
View Article and Find Full Text PDFThe optoelectronic performance of organic-inorganic halide perovskite (OIHP)-based devices has been improved in recent years. Particularly, solar cells fabricated using mixed-cations and mixed-halides have outperformed their single-cation and single-halide counterparts. Yet, a systematic evaluation of the microstructural behavior of mixed perovskites is missing despite their known composition-dependent photoinstability.
View Article and Find Full Text PDFAntisolvent crystallization methods are frequently used to fabricate high-quality metal halide perovskite (MHP) thin films, to produce sizable single crystals, and to synthesize nanoparticles at room temperature. However, a systematic exploration of the effect of specific antisolvents on the intrinsic stability of multicomponent MHPs has yet to be demonstrated. Here, we develop a high-throughput experimental workflow that incorporates chemical robotic synthesis, automated characterization, and machine learning techniques to explore how the choice of antisolvent affects the intrinsic stability of binary MHP systems in ambient conditions over time.
View Article and Find Full Text PDFObjective: Studies have reported controversial findings regarding the flaxseed oil effect on antioxidant status biomarkers. The present meta-analysis aimed to determine the impact of flaxseed oil on the serum level of biomarkers of oxidative stress.
Methods: A systematic search was conducted up to November 2020 on PubMed, Embase, Web of Science, Scopus, and Cochrane Central Library.
ACS Appl Mater Interfaces
July 2021
Quasi-two dimensional (2D) organic-inorganic hybrid perovskites (OIHPs) have shown better ambient stability with decent solar cell performances. However, the power conversion efficiency of quasi-2D OIHPs is still below that of 3D polycrystalline perovskites. To understand the limitation of quasi-2D OIHPs, we explore charge carrier properties in 3D and quasi-2D perovskites using advanced scanning probe microscopy techniques.
View Article and Find Full Text PDFIon migration is one of the most debated mechanisms and credited with multiple observed phenomena and performance in metal halide perovskites (MHPs) semiconductor devices. However, to date, the migration of ions and their effects on MHPs are not still fully understood, largely due to a lack of direct observations of temporal ion migration. In this work, using direct observation of ion migration , we observe the hysteretic migration behavior of intrinsic ions (, CHNH and I) as well as reveal the migration behavior of CHNH decomposition ions.
View Article and Find Full Text PDFMetal halide perovskite (MHP) solar cells have attracted worldwide research interest. Although it has been well established that grain, grain boundary, and grain facet affect MHPs optoelectronic properties, less is known about subgrain structures. Recently, MHP twin stripes, a subgrain feature, have stimulated extensive discussion due to the potential for both beneficial and detrimental effects of ferroelectricity on optoelectronic properties.
View Article and Find Full Text PDFThe gap in understanding how underlying chemical dynamics impact the functionality of metal halide perovskites (MHPs) leads to the controversy about the origin of many phenomena associated with ion migration in MHPs. In particular, the debate regarding the impact of ion migration on current-voltage (-) hysteresis of MHPs devices has lasted for many years, where the difficulty lies in directly uncovering the chemical dynamics, as well as identifying and separating the impact of specific ions. In this work, using a newly developed time-resolved time-of-flight secondary ion mass spectrometry CHNH and I migrations in CHNHPbI are directly observed, revealing hysteretic CHNH and I migrations.
View Article and Find Full Text PDFHalide perovskites have undergone remarkable developments as highly efficient optoelectronic materials for a variety of applications. Several studies indicated the critical role of defects on the performance of perovskite devices. However, the parameters of defects and their interplay with free charge carriers remain unclear.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2019
Despite the rapid progress in organic-inorganic halide perovskites (OIHPs) for applications such as solar cells and detectors, knowledge of coupling between electronic and ionic charge carrier dynamics is so far limited. While the presence of dual-conduction channels is widely accepted, the precise physical mechanisms governing the impact of electronic (e.g.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFElectrochemical reactions and ionic transport underpin the operation of a broad range of devices and applications, from energy storage and conversion to information technologies, as well as biochemical processes, artificial muscles, and soft actuators. Understanding the mechanisms governing function of these applications requires probing local electrochemical phenomena on the relevant time and length scales. Here, we discuss the challenges and opportunities for extending electrochemical characterization probes to the nanometer and ultimately atomic scales, including challenges in down-scaling classical methods, the emergence of novel probes enabled by nanotechnology and based on emergent physics and chemistry of nanoscale systems, and the integration of local data into macroscopic models.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2019
Understanding the impact of environmental gaseous on the surface of organometal halide perovskites (OMHPs) couples to the electronic and ionic transport is critically important. Here, we explore the transport behavior and origins of the gas sensitivity in MAPbBr single crystals (SCs) devices using impedance spectroscopy and current relaxation measurements. Strong resistive response occurs when crystals are exposed to different environments.
View Article and Find Full Text PDFThe extraordinary optoelectronic performance of hybrid organic-inorganic perovskites has resulted in extensive efforts to unravel their properties. Recently, observations of ferroic twin domains in methylammonium lead triiodide drew significant attention as a possible explanation for the current-voltage hysteretic behaviour in these materials. However, the properties of the twin domains, their local chemistry and the chemical impact on optoelectronic performance remain unclear.
View Article and Find Full Text PDF