Publications by authors named "Mahsan Bakhtiarinejad"

Minimally-invasive Osteoporotic Hip Augmentation (OHA) by injecting bone cement is a potential treatment option to reduce the risk of hip fracture. This treatment can significantly benefit from computer-assisted planning and execution system to optimize the pattern of cement injection. We present a novel robotic system for the execution of OHA that consists of a 6-DOF robotic arm and integrated drilling and injection component.

View Article and Find Full Text PDF

Background: Augmentation of the proximal femur with bone cement (femoroplasty) has been identified as a potential preventive approach to reduce the risk of fracture. Femoroplasty, however, is associated with a risk of thermal damage as well as the leakage of bone cement or blockage of blood supply when large volumes of cement are introduced inside the bone.

Methods: Six pairs of cadaveric femora were augmented using a newly proposed planning paradigm and an in-house navigation system to control the location and volume of the injected cement.

View Article and Find Full Text PDF

Femoroplasty is a proposed alternative therapeutic method for preventing osteoporotic hip fractures in the elderly. Previously developed navigation system for femoroplasty required the attachment of an external X-ray fiducial to the femur. We propose a fiducial-free 2D/3D registration pipeline using fluoroscopic images for robot-assisted femoroplasty.

View Article and Find Full Text PDF

A potential effective treatment for prevention of osteoporotic hip fractures is augmentation of the mechanical properties of the femur by injecting it with bone cement. This therapy, however, is only in research stage and can benefit substantially from computational simulations to optimize the pattern of cement injection. Some studies have considered a patient-specific planning paradigm for Osteoporotic Hip Augmentation (OHA).

View Article and Find Full Text PDF

Internal fixation is a common orthopedic procedure in which a rigid screw is used to fix fragments of a fractured bone together and expedite the healing process. However, the rigidity of the screw, geometry of the fractured anatomy (e.g.

View Article and Find Full Text PDF

Accurate placement and stable fixation are the main goals of internal fixation of bone fractures using the traditional medical screws. These goals are necessary to expedite and avoid improper fracture healing due to misalignment of the bone fragments. However, the rigidity of the screw, geometry of the fractured anatomy (e.

View Article and Find Full Text PDF