Progestin concentration in plasma during the early luteal phase is crucial for endometrial function and conceptus development. We hypothesized that periovulatory gonadotrophin treatment via support of luteal function affects endometrial gene expression in horses. Effect of age was analyzed as well.
View Article and Find Full Text PDFA series of twelve novel diamminetetrakis(carboxylato)platinum(IV) and 18 novel bis(carboxylato)dichlorido(ethane-1,2-diamine)platinum(IV) complexes with mixed axial carboxylato ligands was synthesized and characterized by multinuclear (1) H-, (13) C-, (15) N-, and (195) Pt-NMR spectroscopy. Their cytotoxic potential was evaluated (by MTT assay) against three human cancer cell lines derived from ovarian teratocarcinoma (CH1/PA-1), lung (A549), and colon carcinoma (SW480). In the cisplatin-sensitive CH1/PA-1 cancer cell line, diamminetetrakis(carboxylato)platinum(IV) complexes showed IC50 values in the low micromolar range, whereas, for the most lipophilic compounds of the bis(carboxylato)dichlorido(ethane-1,2-diamine)platinum(IV) series, IC50 values in the nanomolar range were found.
View Article and Find Full Text PDFWith the aim of systematically studying fundamental structure-activity relationships as a basis for the development of Ru(II) arene complexes (arene = p-cymene or biphenyl) bearing mono-, bi-, or tridentate am(m)ine ligands as anticancer agents, a series of ammine, ethylenediamine, and diethylenetriamine complexes were prepared by different synthetic routes. Especially the synthesis of mono-, di-, and triammine complexes was found to be highly dependent on the reaction conditions, such as stoichiometry, temperature, and time. Hydrolysis and protein-binding studies were performed to determine the reactivity of the compounds, and only those containing chlorido ligands undergo aquation or form protein adducts.
View Article and Find Full Text PDFA series of eight novel diamminetetrakis(carboxylato)platinum(IV) complexes was synthesized and characterized by multinuclear (1)H-, (13)C-, (15)N-, and (195)Pt-NMR spectroscopy. Their antiproliferative potency was evaluated in three human cancer cell lines representing ovarian (CH1), lung (A549), and colon carcinoma (SW480). In cisplatin-sensitive CH1 cancer cells, cytotoxicity was found in the low micromolar range, whereas, in inherently cisplatin-resistant A549 and SW480 cells, the activity was very low or negligible.
View Article and Find Full Text PDF