Publications by authors named "Mahsa Ghorbaninejad"

Clostridioides difficile is the leading cause of healthcare- and antibiotic-associated diarrhea. Surface layer protein A (SlpA), an essential component of the bacterium's outermost layer, contributes to colonization and inflammation. The peroxisome proliferator-activated receptor gamma (PPAR-γ) has been demonstrated to improve intestinal integrity and prevent inflammation in host cells.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) ranks among the most prevalent cancers and accounts for a significant proportion of cancer-associated deaths worldwide. This disease, marked by multifaceted etiology, often poses diagnostic challenges. Finding a reliable and non-invasive diagnostic method seems to be necessary.

View Article and Find Full Text PDF

Nowadays, anti-TNF therapy remarkably improves the medical management of ulcerative colitis (UC), but approximately 40 % of patients do not respond to this treatment. In this study, we used 79 anti-TNF-naive patients with moderate-to-severe UC from four cohorts to discover alternative therapeutic targets and develop a personalized medicine approach that can diagnose UC non-responders (UCN) prior to receiving anti-TNF therapy. To this end, two microarray data series were integrated to create a discovery cohort with 35 UC samples.

View Article and Find Full Text PDF

Considering the significant limitations of conventional 2D cell cultures and tissue in vitro models, creating intestinal organoids has burgeoned as an ideal option to recapitulate the heterogeneity of the native intestinal epithelium. Intestinal organoids can be developed from either tissue-resident adult stem cells (ADSs) or pluripotent stem cells (PSCs) in both forms induced PSCs and embryonic stem cells. Here, we review current advances in the development of intestinal organoids that have led to a better recapitulation of the complexity, physiology, morphology, function, and microenvironment of the intestine.

View Article and Find Full Text PDF

Despite the extensive body of research, understanding the exact molecular mechanisms governing inflammatory bowel diseases (IBDs) still demands further investigation. Transforming growth factor-β1 (TGF-β1) signaling possesses a multifacial effect on a broad range of context-dependent cellular responses. However, long-term TGF-β1 activity may trigger epithelial-mesenchymal transition (EMT), followed by fibrosis.

View Article and Find Full Text PDF

Background: Efficient differentiation of mesenchymal stem cells (MSCs) into a desired cell lineage remains challenging in cell-based therapy and regenerative medicine. Numerous efforts have been made to efficiently promote differentiation of MSCs into osteoblast lineage. Accordingly, epigenetic signatures emerge as a key conductor of cell differentiation.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Ethnopharmacological studies for drug discovery from natural compounds play an important role for developing current therapeutical platforms. Plants are a group of natural sources which have been served as the basis in the treatment of many diseases for centuries. In this regard, Ceratonia siliqua (carob) is one of the herbal medicine which is traditionally used for male infertility treatments.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) is a debilitating and incurable inflammatory disorder. Despite its increasing prevalence, the underlying pathogenic mechanisms of IBD have not been fully clarified. In addition to the regulatory role of Sonic Hedgehog (SHH) signaling in the maintenance of gut homeostasis, its involvement in development of inflammatory disorders and organ fibrosis has also been reported.

View Article and Find Full Text PDF

Efficient osteogenic differentiation of mesenchymal stem cells (MSCs) is a critical step in the treatment of bone defects and skeletal disorders, which present challenges for cell-based therapy and regenerative medicine. Thus, it is necessary to understand the regulatory agents involved in osteogenesis. Epigenetic mechanisms are considered to be the primary mediators that regulate gene expression during MSC differentiation.

View Article and Find Full Text PDF

Aim: The aim of this study was to determine gene expression levels of TNF-α, NOTCH1, and HES1 in patients with UC.

Background: Intestinal inflammation and epithelial injury are the leading actors of inflammatory bowel disease (IBD), causing an excessive expression of pro-inflammatory cytokines such as TNF-α. Also, target genes of NOTCH signaling are involved in the regulation of intestinal homeostasis.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are an interesting tool in regenerative medicine and a unique cell-based therapy to treat aging-associated diseases. Successful MSC therapy needs a large-scale cell culture, and requires a prolonged in vitro cell culture that subsequently leads to cell senescence. Administration of senescent MSCs results in inefficient cell differentiation in the clinical setting.

View Article and Find Full Text PDF