Publications by authors named "Mahsa Baktashmotlagh"

Open-set domain adaptation (OSDA) aims to transfer knowledge from a label-rich source domain to a label-scarce target domain while addressing disturbances from irrelevant target classes not present in the source data. However, most OSDA approaches are limited due to the lack of essential theoretical analysis of generalization bound, reliance on the coexistence of source and target data during adaptation, and failure to accurately estimate model predictions' uncertainty. To address these limitations, the Progressive Graph Learning (PGL) framework is proposed.

View Article and Find Full Text PDF

Low-dimensional representations are key to the success of many video classification algorithms. However, the commonly-used dimensionality reduction techniques fail to account for the fact that only part of the signal is shared across all the videos in one class. As a consequence, the resulting representations contain instance-specific information, which introduces noise in the classification process.

View Article and Find Full Text PDF