Publications by authors named "Mahomi Kuroiwa"

Depression can be associated with chronic systemic inflammation, and production of peripheral proinflammatory cytokines and upregulation of the kynurenine pathway have been implicated in pathogenesis of depression. However, the mechanistic bases for these comorbidities are not yet well understood. As tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO), which convert tryptophan to kynurenine, are rate-limiting enzymes of the kynurenine pathway, we screened TDO or IDO inhibitors for effects on the production of proinflammatory cytokines in a mouse macrophage cell line.

View Article and Find Full Text PDF

Calcineurin (Cn), a phosphatase important for synaptic plasticity and neuronal development, has been implicated in the etiology and pathophysiology of neuropsychiatric disorders, including schizophrenia, intellectual disability, autism spectrum disorders, epilepsy, and Alzheimer's disease. Forebrain-specific conditional Cn knockout mice have been known to exhibit multiple behavioral phenotypes related to these disorders. In this study, we investigated whether Cn mutant mice show pseudo-immaturity of the dentate gyrus (iDG) in the hippocampus, which we have proposed as an endophenotype shared by these disorders.

View Article and Find Full Text PDF

Dopamine regulates psychomotor function by D1 receptor/PKA-dependent phosphorylation of DARPP-32. DARPP-32, phosphorylated at Thr34 by PKA, inhibits protein phosphatase 1 (PP1), and amplifies the phosphorylation of other PKA/PP1 substrates following D1 receptor activation. In addition to the D1 receptor/PKA/DARPP-32 signaling pathway, D1 receptor stimulation is known to activate Rap1/ERK signaling.

View Article and Find Full Text PDF

Dopamine D receptors (DRs) in the hippocampal dentate gyrus (DG) are essential for antidepressant effects. However, the midbrain dopaminergic neurons, the major source of dopamine in the brain, only sparsely project to DG, suggesting possible activation of DG DRs by endogenous substances other than dopamine. We have examined this possibility using electrophysiological and biochemical techniques and found robust activation of DRs in mouse DG neurons by noradrenaline.

View Article and Find Full Text PDF

The striatum is the main structure of the basal ganglia. The striatum receives inputs from various cortical areas, and its subregions play distinct roles in motor and emotional functions. Recently, striatal maps based on corticostriatal connectivity and striosome-matrix compartmentalization were developed, and we were able to subdivide the striatum into seven subregions.

View Article and Find Full Text PDF

Thyroid hormones are critical for the regulation of development and differentiation of neurons and glial cells in the central nervous system (CNS). We have previously reported the sex-dependent changes of glial morphology in the brain under the state of hyperthyroidism. Here, we examined sex-dependent changes in spine structure of granule neurons in the dentate gyrus of hippocampus in male and female mice with hyperthyroidism.

View Article and Find Full Text PDF

Development of drug addictive behaviors is modulated by both genetic and environmental risk factors. However, the molecular mechanisms remain unknown. To address the role of adolescent stress in the development of drug addiction, we combined a transgenic mouse model in which a putative dominant-negative form of DISC1 under expressional control of the prion protein promoter is used as a genetic risk factor and adolescent social isolation stress as a gene-environmental interaction (GXE).

View Article and Find Full Text PDF

Depression is a leading cause of disability. Current pharmacological treatment of depression is insufficient, and development of improved treatments especially for treatment-resistant depression is desired. Understanding the neurobiology of antidepressant actions may lead to development of improved therapeutic approaches.

View Article and Find Full Text PDF

The interaction of glutamate and dopamine in the striatum is heavily dependent on signaling pathways that converge on the regulatory protein DARPP-32. The efficacy of dopamine/D1 receptor/PKA signaling is regulated by DARPP-32 phosphorylated at Thr-34 (the PKA site), a process that inhibits protein phosphatase 1 (PP1) and potentiates PKA action. Activation of dopamine/D1 receptor/PKA signaling also leads to dephosphorylation of DARPP-32 at Ser-97 (the CK2 site), leading to localization of phospho-Thr-34 DARPP-32 in the nucleus where it also inhibits PP1.

View Article and Find Full Text PDF

A selective serotonin reuptake inhibitor is the most commonly prescribed antidepressant for the treatment of major depression. However, the mechanisms underlying the actions of selective serotonin reuptake inhibitors are not fully understood. In the dentate gyrus, chronic fluoxetine treatment induces increased excitability of mature granule cells (GCs) as well as neurogenesis.

View Article and Find Full Text PDF

Resveratrol is known as an activator of SIRT1, which leads to the deacetylation of histone and non-histone protein substrates, but also has other pharmacological profiles such as the inhibition of monoamine oxidase (MAO)-A and MAO-B. Resveratrol was previously demonstrated to potentiate the rewarding effects of chronic cocaine via activation of SIRT1. However, the role of resveratrol in cocaine responses in the acute phase remains unexplored.

View Article and Find Full Text PDF

Schnurri-2 (Shn-2), an nuclear factor-κB site-binding protein, tightly binds to the enhancers of major histocompatibility complex class I genes and inflammatory cytokines, which have been shown to harbor common variant single-nucleotide polymorphisms associated with schizophrenia. Although genes related to immunity are implicated in schizophrenia, there has been no study showing that their mutation or knockout (KO) results in schizophrenia. Here, we show that Shn-2 KO mice have behavioral abnormalities that resemble those of schizophrenics.

View Article and Find Full Text PDF

Muscarinic receptors, activated by acetylcholine, play critical roles in the functional regulation of medium spiny neurons in the striatum. However, the muscarinic receptor signaling pathways are not fully elucidated due to their complexity. In this study, we investigated the function of muscarinic receptors in the striatum by monitoring DARPP-32 (dopamine- and cAMP-regulated phosphoprotein of M(r) 32 kDa) phosphorylation at Thr34 (the PKA-site) using mouse striatal slices.

View Article and Find Full Text PDF

Rationale: Alteration of dopamine neurotransmission in the prefrontal cortex, especially hypofunction of dopamine D1 receptors, contributes to psychotic symptoms and cognitive deficit in schizophrenia. D1 receptors signal through the cAMP/PKA second messenger cascade, which is modulated by phosphodiesterase (PDE) enzymes that hydrolyze and inactivate cyclic nucleotides. Though several PDEs are expressed in cortical neurons, the PDE4 enzyme family (PDE4A-D) has been implicated in the control of cognitive function.

View Article and Find Full Text PDF

In the striatum, dopamine D(1) receptors are preferentially expressed in striatonigral neurons, and increase the neuronal excitability, leading to the increase in GABAergic inhibitory output to substantia nigra pars reticulata. Such roles of D(1) receptors are important for the control of motor functions. In addition, the roles of D(1) receptors are implicated in reward, cognition, and drug addiction.

View Article and Find Full Text PDF

Studies in animal models of Parkinson's disease have revealed that degeneration of noradrenaline neurons is involved in the motor deficits. Several types of adrenoceptors are highly expressed in neostriatal neurons. However, the selective actions of these receptors on striatal signaling pathways have not been characterized.

View Article and Find Full Text PDF

Phosphodiesterase (PDE) is a critical regulator of cAMP/protein kinase A (PKA) signaling in cells. Multiple PDEs with different substrate specificities and subcellular localization are expressed in neurons. Dopamine plays a central role in the regulation of motor and cognitive functions.

View Article and Find Full Text PDF

Dopamine D(1)-like receptors play a key role in dopaminergic signaling. In addition to G(s/olf)/adenylyl cyclase (AC)-coupled D(1) receptors, the presence of D(1)-like receptors coupled to G(q)/phospholipase C (PLC) has been proposed. Benzazepine D(1) receptor agonists are known to differentially activate G(s/olf)/AC and G(q)/PLC signaling.

View Article and Find Full Text PDF

DARPP-32 is a dual-function protein kinase/phosphatase inhibitor that is involved in striatal signaling. The phosphorylation of DARPP-32 at threonine 34 is essential for mediating the effects of both psychostimulant and antipsychotic drugs; however, these drugs are known to have opposing behavioral and clinical effects. We hypothesized that these drugs exert differential effects on striatonigral and striatopallidal neurons, which comprise distinct output pathways of the basal ganglia.

View Article and Find Full Text PDF

Repeated administration of psychostimulants produces a behavioural sensitization. Amphetamine-sensitized animals are known to have a higher proportion of high-affinity states of dopamine D2 receptors (D2(High) receptors) in the striatum. We recently reported that repeated administration of a dopamine D1 receptor agonist, R-(+)-SKF38393, reverses the established behavioural sensitization to methamphetamine (MAP).

View Article and Find Full Text PDF

While cyclin-dependent kinase 5 (Cdk5) is of growing importance to neuronal signaling, its regulation remains relatively unexplored. Examination of the mechanism by which NMDA modulates the phosphorylation of protein phosphatase inhibitor-1 at Ser6 and Ser67 and dopamine- and cAMP-regulated phosphoprotein M(r) 32 000 at Thr75 revealed that generalized depolarization, rather than specific activation of NMDA receptors, was sufficient to induce decreases in these Cdk5 sites. Although no evidence for the involvement of the Cdk5 cofactors p35 or p39, or for L- and T-type voltage-gated Ca(2+) channels, was found, evaluation of the role of phosphatases and extracellular cations revealed differential regulation of the three sites.

View Article and Find Full Text PDF

Repeated intermittent administration of methamphetamine (MAP) produces an enduring hypersensitivity to the motor stimulant effect of MAP, termed behavioral sensitization. Dopamine plays a critical role in the development and expression of behavioral sensitization. Here, we investigated whether a dopamine D1 receptor agonist could reverse behavioral sensitization to MAP.

View Article and Find Full Text PDF

Nicotinic acetylcholine receptors (nAChRs) regulate dopaminergic signaling in the striatum by modulating the release of neurotransmitters. We have recently reported that nicotine stimulates the release of dopamine via alpha4beta2(*) nAChRs and/or alpha7 nAChRs, leading to the regulation of DARPP-32 at Thr34, the site involved in regulation of protein phosphatase-1 (PP-1). In this study, we investigated the regulation of DARPP-32 phosphorylation at its other sites, Thr75 [cyclin-dependent kinase-5 (Cdk5) site], Ser97 (CK2 site), and Ser130 (CK1 site), that serve to modulate Thr34 phosphorylation and dephosphorylation.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: