Produced water, a major by-product of oil and gas production, represents the most significant amount of waste by volume in the oil and gas industry. Focusing on the hydrocarbon's lifecycle, this review delves into the composition and global variations of produced water. It assesses the current treatment methods for their effectiveness and their potential for reuse in sectors beyond oil and gas, such as agriculture.
View Article and Find Full Text PDFThis paper assesses the performance of an integrated multistage laboratory-scale plant, for the treatment of poultry slaughterhouse wastewater (PSW). The system was comprised of an eco-flush dosed bio-physico pre-treatment unit for fats, oil, and grease (FOG) hydrolysis prior to the PSW being fed to a down-flow expanded granular bed reactor (DEGBR), coupled to a membrane bioreactor (DEGBR-MBR). The system's configuration strategy was developed to achieve optimal PSW treatment by introducing the enzymatic pre-treatment unit for the lipid-rich influent (PSW) in order to treat FOG including odour causing constituents such as HS known to sour anaerobic digestion (AD) such that the PSW pollutant load is alleviated prior to AD treatment.
View Article and Find Full Text PDFThis study presents the biological treatment of poultry slaughterhouse wastewater (PSW) using a combination of a biological pretreatment stage, an expanded granular sludge bed reactor (EGSB), and a membrane bioreactor (MBR) to treat PSW. This PSW treatment was geared toward reducing the concentration of contaminants present in the PSW to meet the City of Cape Town (CoCT) discharge standards and evaluate an alternative means of treating medium- to high-strength wastewater at low cost. The EGSB used in this study was operated under mesophilic conditions and at an organic loading rate (OLR) of 69 to 456 mg COD/L·h.
View Article and Find Full Text PDFIn this study, the treatment of poultry slaughterhouse wastewater (PSW) was evaluated using two new down-flow high-rate anaerobic bioreactor systems (HRABS), including the down-flow expanded granular bed reactor (DEGBR) and the static granular bed reactor (SGBR). These two bioreactors have demonstrated a good performance for the treatment of PSW with removal percentages of the biochemical oxygen demand (BOD), the chemical oxygen demand (COD), and fats, oil, and grease (FOG) exceeding 95% during peak performance days. This performance of down-flow HRABS appears as a breakthrough in the field of anaerobic treatment of medium to high-strength wastewater because down-flow anaerobic bioreactors have been neglected for the high-rate anaerobic treatment of such wastewater due to the success of up-flow anaerobic reactors such as the UASB and the EGSB as a result of the granulation of a consortium of anaerobic bacteria required for efficient anaerobic digestion and biogas production.
View Article and Find Full Text PDF