Publications by authors named "Maho Yamaguchi"

Objectives: This study examined how the anti-bone resorptive agent denosumab, which comprises anti-receptor activator of nuclear factor kappa B ligand (anti-RANKL) monoclonal antibodies, administered during pregnancy affected neonatal development. Anti-RANKL antibodies, which are known to bind to mouse RANKL and inhibit osteoclast formation, were administered to pregnant mice. Following this, the survival, growth, bone mineralization, and tooth development of their neonates were analyzed.

View Article and Find Full Text PDF
Article Synopsis
  • * Research indicates that vaspin is highly expressed in macrophages and vascular smooth muscle cells within atherosclerotic plaques and plays a role in reducing inflammation and foam cell formation in these cells.
  • * In a study with hyperlipidemic mice, vaspin infusion led to a significant reduction in atherosclerotic lesion development and inflammation, suggesting its potential as a therapeutic target in cardiovascular diseases.
View Article and Find Full Text PDF

Adropin, a peptide hormone expressed in liver and brain, is known to improve insulin resistance and endothelial dysfunction. Serum levels of adropin are negatively associated with the severity of coronary artery disease. However, it remains unknown whether adropin could modulate atherogenesis.

View Article and Find Full Text PDF

Background: Neopterin, a metabolite of GTP, is produced by activated macrophages and is abundantly expressed within atherosclerotic lesions in human aorta and carotid and coronary arteries. We aimed to clarify the influence of neopterin on both vascular inflammation and atherosclerosis, as neither effect had been fully assessed.

Methods And Results: We investigated neopterin expression in coronary artery lesions and plasma from patients with coronary artery disease.

View Article and Find Full Text PDF

The interaction between boron nitride nanotubes (BNNTs) layer and mesenchymal stem cells (MSCs) is evaluated for the first time in this study. BNNTs layer supports the attachment and growth of MSCs and exhibits good biocompatibility with MSCs. BNNTs show high protein adsorption ability, promote the proliferation of MSCs and increase the secretion of total protein by MSCs.

View Article and Find Full Text PDF

Aim: Boron nitride nanotubes (BNNTs) are tubular nanoparticles with a structure analogous to that of carbon nanotubes, but with B and N atoms that completely replace the C atoms. Many favorable results indicate BNNTs as safe nanomaterials; however, important concerns have recently been raised about ultra-pure, long (~10 µm) BNNTs tested on several cell types.

Materials & Methods: Here, we propose additional experiments with the same BNNTs, but shortened (~1.

View Article and Find Full Text PDF

Introduction: We previously identified prostate cancer (PCa)-associated aberrant glycosylation of PSA, where α2,3-linked sialylation is an additional terminal N-glycan on free PSA (S2,3PSA). We then developed a new assay system measuring S2,3PSA using a magnetic microbead-based immunoassay. We compared the diagnostic accuracy of conventional PSA and percent-free PSA (%fPSA) tests.

View Article and Find Full Text PDF

Boron nitride nanotubes@NaGdF4:Eu composites with core@shell structures were fabricated giving the opportunity to trace, target and thus to manipulate BNNTs in vitro. The composites show a significantly higher cellular uptake and chemotherapy drug intracellular delivery ability in the presence of an external magnetic field than that in its absence.

View Article and Find Full Text PDF

The fractionation by length of multiwalled boron nitride nanotubes (BNNTs) was achieved by emulsification and creaming of an oil/water/surfactant mixture. The length separation is based on the fact that nanoparticle-coated oil droplets polydisperse in size move toward the upper surface or the bottom of an emulsified mixture depending on the density of the droplets, such that droplets of different sizes are located at different heights. By sampling heightwise an unstable hexane/water/Tween 20/BNNT (1-20 μm long) emulsion, we observed that the lengths of the BNNTs adsorbed on the droplets display a strong correlation with the droplets sizes, thus leading to selective separation of the BNNT lengths, as confirmed by dark-field optical imaging and dynamic light scattering.

View Article and Find Full Text PDF

Boron nitride nanotube (BNNT)@mesoporous silica hybrids with controllable surface zeta potential were fabricated for intracellular delivery of doxorubicin. The materials showed higher suspension ability, doxorubicin intracellular endocytosis efficiency, and LNcap prostate cancer cell killing ability compared with naked BNNTs.

View Article and Find Full Text PDF

Influenza viruses (IFVs) recognize sialoglycans expressed on the host cell surface. To understand the mechanisms underlying tissue and host tropisms of IFV, it is essential to elucidate the molecular interaction of the virus with the host sialoglycan receptor. We established and applied a new monoclonal antibody, clone HYB4, which specifically recognizes the Neu5Acα2-3 determinant at the non-reducing terminal Gal residue of both glycoproteins and gangliosides to investigate the biochemical properties of IFV receptors in A549 cells.

View Article and Find Full Text PDF

Multiwalled boron nitride nanotubes (BNNTs) have very attractive mechanical and thermal properties, e.g., elasticity, tensile strength, and high resistance to oxidation, and may be considered as ideal reinforcing agents in lightweight metal matrix composites.

View Article and Find Full Text PDF

A novel ganglioside bearing Neua2-3Gal and Neua2-6Gal structures as distal sequences was designed as a ligand for influenza A viruses. The efficient synthesis of the designed ganglioside was accomplished by employing the cassette coupling approach as a key reaction, which was executed between the non-reducing end of the oligosaccharide and the cyclic glucosylceramide moiety. Examination of its binding activity to influenza A viruses revealed that the new ligand is recognized by Neua2-3 and 2-6 type viruses.

View Article and Find Full Text PDF

The synthesis of a novel C4-linked C2-imidazole ribonucleoside phosphoramidite (ICN-C2-PA 1) with a two-carbon linker between imidazole and ribose moieties is described. In the phosphoramidite, POM and 2-cyanoethyl groups were selected to protect the endocyclic amine function of imidazole and the 2'-hydroxyl function of D-ribose, respectively. The C2-imidazole nucleoside, a flexible structural mimic of a purine nucleobase, was successfully incorporated using ICN-C2-PA 1 into position 638 of the VS ribozyme through 2'-TBDMS chemistry to study the role of G638 in general acid-base catalysis.

View Article and Find Full Text PDF

We constructed a modified form of the VS ribozyme containing an imidazole ring in place of adenine at position 756. The novel ribozyme is active in both cleavage and ligation reactions. The reaction is efficient, although relatively slow.

View Article and Find Full Text PDF