Publications by authors named "Maho Kanai"

Article Synopsis
  • Long-duration spaceflight can stress the skeletal and immune systems, but the specific response mechanisms are still not fully understood.
  • A study with mice on the ISS evaluated how different gravitational conditions (microgravity, lunar gravity, and Earth gravity) affected their bone, thymus, and spleen over 25-35 days.
  • Results showed that while bone density loss in microgravity was mostly restored in Earth gravity, lunar gravity only offered partial recovery; microgravity also caused thymus shrinkage, partially reversible by both lunar and Earth gravity but with ongoing gene expression issues.
View Article and Find Full Text PDF

Monocytes and macrophages express the transcription factor MAFB (V-maf musculoaponeurotic fibrosarcoma oncogene homolog B) and protect against ischemic acute kidney injury (AKI). However, the mechanism through which MAFB alleviates AKI in macrophages remains unclear. In this study, we induced AKI in macrophage lineage-specific Mafb-deficient mice (C57BL/6J) using the ischemia-reperfusion injury model to analyze these mechanisms.

View Article and Find Full Text PDF

Muscle regeneration depends on muscle stem cell (MuSC) activity. Myogenic regulatory factors, including myoblast determination protein 1 (MyoD), regulate the fate transition of MuSCs. However, the direct target of MYOD in the process is not completely clear.

View Article and Find Full Text PDF

Transcription factor MAFB regulates various homeostatic functions of macrophages. This study explores the role of MAFB in brown adipose tissue (BAT) thermogenesis using macrophage-specific Mafb-deficient (Mafb::LysM-Cre) mice. We find that Mafb deficiency in macrophages reduces thermogenesis, energy expenditure, and sympathetic neuron (SN) density in BAT under cold conditions.

View Article and Find Full Text PDF

Natto, known for its high vitamin K content, has been demonstrated to suppress atherosclerosis in large-scale clinical trials through a yet-unknown mechanism. In this study, we used a previously reported mouse model, transplanting the bone marrow of mice expressing infra-red fluorescent protein (iRFP) into LDLR-deficient mice, allowing unique and non-invasive observation of foam cells expressing iRFP in atherosclerotic lesions. Using 3 natto strains, we meticulously examined the effects of varying vitamin K levels on atherosclerosis in these mice.

View Article and Find Full Text PDF

Skeletal muscle is sensitive to gravitational alterations. We recently developed a multiple artificial-gravity research system (MARS), which can generate gravity ranging from microgravity to Earth gravity (1 g) in space. Using the MARS, we studied the effects of three different gravitational levels (microgravity, lunar gravity [1/6 g], and 1 g) on the skeletal muscle mass and myofiber constitution in mice.

View Article and Find Full Text PDF

Spaceflight causes a decrease in skeletal muscle mass and strength. We set two murine experimental groups in orbit for 35 days aboard the International Space Station, under artificial earth-gravity (artificial 1 g; AG) and microgravity (μg; MG), to investigate whether artificial 1 g exposure prevents muscle atrophy at the molecular level. Our main findings indicated that AG onboard environment prevented changes under microgravity in soleus muscle not only in muscle mass and fiber type composition but also in the alteration of gene expression profiles.

View Article and Find Full Text PDF
Article Synopsis
  • Focal segmental glomerulosclerosis (FSGS) is a major cause of nephrotic syndrome that resists steroid treatment, often leading to kidney failure, with spontaneous recovery being uncommon.
  • The study reveals that the basic leucine zipper transcription factor, MafB, is crucial for podocyte function and is decreased in patients with FSGS; mice lacking MafB specifically in podocytes developed FSGS and severe proteinuria.
  • Overexpressing MafB in podocytes of transgenic mice was found to reduce adriamycin-induced FSGS symptoms, suggesting MafB as a potential new target for FSGS therapies.
View Article and Find Full Text PDF

The transcription factor, MafB, plays important role in the differentiation and functional maintenance of various cells and tissues, such as the inner ear, kidney podocyte, parathyroid gland, pancreatic islet, and macrophages. The rare heterozygous substitution (p.Leu239Pro) of the DNA binding domain in MAFB is the cause of Focal Segmental Glomerulosclerosis associated with Duane Retraction Syndrome, which is characterized by impaired horizontal eye movement due to cranial nerve maldevelopment in humans.

View Article and Find Full Text PDF

Multicentric carpotarsal osteolysis (MCTO) is a condition involving progressive osteolysis of the carpal and tarsal bones that is associated with glomerular sclerosis and renal failure (MCTO nephropathy). Previous work identified an autosomal dominant missense mutation in the transactivation domain of the transcription factor MAFB as the cause of MCTO. Several methods are currently used for MCTO nephropathy treatment, but these methods are invasive and lead to severe side effects, limiting their use.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionl08n5e36c5080o02caujuipbs7m337l6): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once