Obesity is found to be a significant risk factor for type 2 diabetes mellitus (T2DM), attributed to lipotoxicity-induced β-cell dysfunction. However, the specific mechanism involved in the process remains incompletely unclarified. The current study demonstrated lipotoxicity resulted in the activation of ER stress, which increased the protein level of TXNIP, thereby inducing senescence-assiciated dysfunction in MIN6 cells under high fat environment.
View Article and Find Full Text PDFSesamol (SEM), a lignan from sesame oil, exhibited potential benefits on obesity treatment by promoting browning of adipocytes, and the current study is aimed to explore the molecular mechanisms of SEM from the aspect of systemic liver-adipose crosstalk that mediated by hepatic fibroblast growth factor 21 (FGF21). Our in vivo data showed that SEM induced energy expenditure and white adipose tissue (WAT) browning by increasing the expression level of uncoupling protein-1 in high fat diet induced obese C57BL/6J mice. Elevated levels of circulating FGF21 associated with the increased expression of hepatic FGF21 were observed after SEM intervention.
View Article and Find Full Text PDFObesity can evoke changes of skeletal muscle structure and function, which are characterized by the conversion of myofiber from type I to type II, leading to a vicious cycle of metabolic disorders. Reversing the muscle fiber-type conversion in obese states is a novel strategy for treating those with obesity. Sesamol, a food ingredient compound isolated from sesame seeds, exerted potential antiobesity effects.
View Article and Find Full Text PDF