Publications by authors named "Mahnaz Qazi"

The renin-angiotensin-aldosterone system contributes to cardiac remodeling, hypertrophy, and left ventricular dysfunction. Angiotensin II and aldosterone (corticosterone in rodents) together generate reactive oxygen species (ROS) via reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which likely facilitate this hypertrophy and remodeling. This investigation sought to determine whether cardiac oxidative stress and cellular remodeling could be attenuated by in vivo mineralocorticoid receptor (MR) blockade in a rodent model of the chronically elevated tissue renin-angiotensin-aldosterone system, the transgenic TG (mRen2) 27 rat (Ren2).

View Article and Find Full Text PDF

Angiotensin II (ANG II) contributes to cardiac remodeling, hypertrophy, and left ventricular dysfunction. ANG II stimulation of the ANG type 1 receptor (AT(1)R) generates reactive oxygen species via NADPH oxidase, which facilitates this hypertrophy and remodeling. This investigation sought to determine whether cardiac oxidative stress and cellular remodeling could be attenuated by in vivo AT(1)R blockade (AT(1)B) (valsartan) or superoxide dismutase/catalase mimetic (tempol) treatment in a rodent model of chronically elevated tissue levels of ANG II, the transgenic (mRen2) 27 rat (Ren2).

View Article and Find Full Text PDF

Angiotensin-II (Ang-II)-stimulated increases in nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase activity and oxidative stress are known to play a key role in cardiac remodeling. Inhibition of isoprenylation and activation of small G proteins, such as Rac1, a component of NADPH oxidase, may mediate the antioxidant actions of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins). In this study, we investigated the effects of rosuvastatin on cardiac oxidative stress and remodeling in transgenic rats (Ren2) overexpressing the mouse renin gene with elevated cardiac levels of Ang-II.

View Article and Find Full Text PDF