Publications by authors named "Mahnaz Mahmoudi-Rad"

Concentration control of some drug are used commonly however their uncontrolled concentration renders severe side effects. Therefore, it is substantial to come up with innovation release control methods. There is a strong affinity between the phospholipid of nanoliposomes and wool cells which facilitate the diffusion of liposomes into the wool structure.

View Article and Find Full Text PDF

Photocatalysts and noble metals have attracted considerable attention for their potential in addressing global environmental pollution through photochemical processes. At low temperatures, multifunctional self-cleanable wool fabric was developed through green photo-sonosynthesis of N-Ag/TiO2/ZnO. A narrower bandgap of the hybrid photocatalyst, the surface plasmonic resonance effect of silver nanostructures, and nitrogen doping resulted in synergistically enhanced self-cleaning activity.

View Article and Find Full Text PDF

This research focuses on preparing a natural-based drug delivery system for α-arbutin (AR) as a skin lightening. Bacterial cellulose nanofibers (BC) pad was used for controlled-AR release through two approaches. First was the dip-drying method (P-BC), in which AR cross-linked to BC pads using citric acid (CA).

View Article and Find Full Text PDF

Here a starch and starch hydrogel nanocomposite and superabsorbent cotton fabric was fabricated and characterized. The optimized starch hydrogel nanocomposite was synthesized by using 0.008 M potassium permanganate, 0.

View Article and Find Full Text PDF

A combination of light microscopy and image processing was applied to investigate morphology of label-free primary-melanocytes and melanoma cells. A novel methodological approach based on morphology of nuclear body was used to find those single cells, which were at the same phase of cell cycle. The area and perimeter of melanocytes and melanoma cells were quantified.

View Article and Find Full Text PDF

Polysaccharide-based nanofibers from Tragacanth Gum (TG) and polyethylene terephthalate (PET) were post-treated with selenium nanoparticles (Se NPs) and also stabilized with TG (SeNPs/TG). DLS, FE-SEM, EDX, TEM, and XRD were employed to verify the synthesis of Se NPs. The relatively narrow size distribution of SeNPs/TG showed through TEM and DLS investigations comparing with Se NPs.

View Article and Find Full Text PDF

Benign polymeric and textile based materials having multifaceted features such as antibacterial performance, hydrophobic property and photocatalytic activity are highly interesting from the both human health and environment observations. Herein, a cytocompatible polyester fiber composite incorporated via photocatalytic nano copper ferrite/myristic-lauric fatty acids coating with antibacterial and hydrophobic performances was prepared through one-pot facile fabrication route. X-ray diffraction analysis, energy-dispersive X-ray spectroscopy, mapping images, Field-emission scanning electron microscope and Fourier transform infrared spectra were accomplished to indemnify the prepared composites.

View Article and Find Full Text PDF

Developing a simple and clean technique for imparting low antibacterial properties with water-repellent application is highly desirable with regarding to the both environmental and economic concerns. Herein, we suggest a facile and green technique to fabricate a novel composite by one-step in situ green creation of copper nanoparticles into the fatty acid absorbed on the polyester fibers for antibacterial and hydrophobic applications. Fourier transforms infrared spectra, X-ray diffraction analysis, Field-emission scanning electron microscope, mapping images and energy-dispersive X-ray spectroscopy were performed to characterize the prepared composite.

View Article and Find Full Text PDF

In this paper, a facile environmentally friendly method is introduced for in-situ synthesis and fabrication of cauliflower-like CuO nanoparticles on the polyester fabric to produce photo and biocatalytic activities with UV protection properties on polyester fabric. The ash of burnt leaves and stems of Seidlitzia rosmarinus plant called Keliab was used as a natural and nontoxic alkaline source for simultaneous synthesis of CuO nanoparticles and surface modification of polyester without using any other compounds. The images of field-emission scanning electron microscopy, patterns of energy-dispersive spectroscopy, UV-visible spectrum and X-ray diffraction confirmed successful synthesis and loading of CuO nanoparticles on the polyester fabric.

View Article and Find Full Text PDF

In this research, a facile, rapid and eco-friendly method is introduced for synthesis and loading of cupric oxide on cellulosic chains of cotton fabric with functional properties. Seidlitzia rosmarinus ashes and copper acetate were employed as a natural source of alkaline and metal salt without further chemical materials. The treated samples indicated very good antibacterial activities toward both pathogen Staphylococcus aureus as Gram-positive and Escherichia coli as Gram-negative bacteria.

View Article and Find Full Text PDF

This study suggested successful encapsulation of polyhexamethylene biguanide chloride (PHMB) into nano cationic liposome as a biocompatible antibacterial agent with less cytotoxicity and higher activities. Phosphatidylcholine, cholesterol and stearylamine were used to prepare nano cationic liposome using thin film hydration method along with sonication or homogeniser. Sonication was more effective in PHMB loaded nano cationic liposome preparation with smaller size (34 nm).

View Article and Find Full Text PDF

Application of natural materials in wound healing is an interest topic due to effective treatment with no side effects. In this paper, Aloe Vera extract was encapsulated into Tragacanth Gum through a sonochemical microemulsion process to prepare a wound healing product. FESEM/EDX and FT-IR proved the successfully formation of the nanocapsules with spherical shape by cross-linking aluminum ions with Tragacanth Gum.

View Article and Find Full Text PDF

Background: The multifunctional transforming growth factor beta (TGF-β) is a glycoprotein that exists in three isoforms. TGF-β3 expression increases in fetal wound healing and reduces fibronectin and collagen I and III deposition, and also improves the architecture of the neodermis which is a combination of blood vessels and connective tissue during wound healing. Fibroblasts are key cells in the wound healing process.

View Article and Find Full Text PDF

A magnetic cotton/polyester fabric with photocatalytic, sonocatalytic, antibacterial and antifungal activities was successfully prepared through in-situ sonosynthesis method under ultrasound irradiation. The process involved the oxidation of Fe(2+) to Fe(3+) via hydroxyl radicals generated through bubbles collapse in ultrasonic bath. The treated samples were analyzed by X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy and vibrating sample magnetometry.

View Article and Find Full Text PDF

Objective: Utilization of the autologous and allogeneic skin substitutes seems to be a promising treatment option. In this study, the authors used amniotic membrane covered with cultured allogenic fibroblast as a skin substitute in the treatment of acute wounds.

Materials And Methods: Full-thickness wounds were created on rats' dorsum regions and treated with cultured allogenic fibroblast on an acellular amniotic membrane (AAM+F), an acellular amniotic membrane (AAM) alone, an allogenic fibroblast suspension (AFS), or normal saline as a control (C).

View Article and Find Full Text PDF

Tragacanth, a natural gum, has been used for centuries as emulsifier, thickener, stabilizer and binder in various fields such as food, medical and cosmetic industries. In this study, Tragacanth gum was used as a clean and natural reducing and stabilizing agent for preparation of urchin-like ZnO nanorod arrays at low-temperature using ultrasonic irradiation. The morphology and structure of urchin-like ZnO nanorod arrays was investigated by XRD, FESEM images, EDX, UV-vis and FT-IR spectroscopy.

View Article and Find Full Text PDF

Here, a novel and efficient process is introduced for producing wool fabric with multifunctional features through facile in situ photosonochemical synthesis of organic/inorganic nanocomposites. The fabric was treated with titanium isopropoxide, silver nitrate and ammonia in a sonobath for 1 h at 75-80°C. The crystal phase of the sono-treated samples was characterized by X-ray diffraction.

View Article and Find Full Text PDF

Tragacanth gum as a biocompatible and biodegradable polymer with good properties including emulsifying, viscosity and cross-linking ability can be used as the wall material in encapsulation of different compounds, specifically plant extracts. In this paper, for the first time, Tragacanth gum was used to produce nanocapsules containing plant extract through microemulsion method. The effect of different parameters on the average size of prepared nanocapsules in presence of aluminum and calcium chloride through ultrasonic and magnetic stirrer was investigated.

View Article and Find Full Text PDF

In this work, nonmetal/metal dual-doped honeycomb-like N-Ag/ZnO nanocomposites were successfully photo sonosynthesized and sonoimmobilized on wool fabric through a facile one-step method under ambient pressure at low temperature as a novel photo-catalyst nanocomposite on textile material. Introducing nitrogen and silver on the sonoprepared nano ZnO particles led to superior photocatalytic activity. The homogenous distribution of the honeycomb-like nanocomposites on the fiber surface was confirmed by FE-SEM, EDX and X-ray mapping.

View Article and Find Full Text PDF

In this study, N-doped ZnO/TiO2 core-shell nanocomposite was successfully sonosynthesized and sonofabricated on wool fabric through a facile one-step method under ambient pressure and low temperature (75-80°C) as a novel photo-catalyst nanocomposite on textile material. The differences between crystalline phase transformation of conventional and ultrasound synthesized N-ZnO/TiO2 has been compared. The influence of different zinc acetate and titanium isopropoxide precursors in the formation of nanocomposite was studied and optimized through response surface methodology.

View Article and Find Full Text PDF

Here, a simple processing route is introduced for preparation of N-doped nano structure ZnO at 75-80°C using in-situ sonosynthesis method through hydrolysis of zinc acetate at pH≈9-10 adjusting with ammonia. Synthesis and fabrication of nano N-doped ZnO were carried out on the wool fabric through impregnation of the fabric in ultrasound bath using different concentrations of zinc acetate followed by curing. The antibacterial and antifungal activities of the treated fabrics were assessed against two common pathogenic bacteria including Escherichia coli, Staphylococcus aureus and the diploid fungus namely Candida albicans.

View Article and Find Full Text PDF

Background: Wound healing is a complex process. Different types of skin cells, extracellular matrix and variety of growth factors are involved in wound healing. The use of recombinant growth factors in researches and production of skin substitutes are still a challenge.

View Article and Find Full Text PDF

Nano nitrogen-doped titanium dioxide was rapidly prepared by hydrolysis of titanium isopropoxide at 75-80°C using in situ sonochemical synthesis by introducing ammonia. Various concentrations of titanium isopropoxide were examined to deposit nano nitrogen-doped titanium dioxide through impregnation of the wool fabric in ultrasound bath followed by curing. The antibacterial/antifungal activities of wool samples were assessed against two common pathogenic bacteria including Escherichia coli and Staphylococcus aureus and the diploid fungus Candida albicans.

View Article and Find Full Text PDF

Ag:Au alloy nanoparticles were successfully synthesized through the new route using co-reduction method with silver nitrate, chloroauric acid, cetyl trimethyl ammonium bromide (CTAB) and sodium borohydride at room temperature. The Ag:Au alloy nanoparticles were then loaded within the phosphatidylcholine (97%) liposome structure. Various molar ratios of phosphotidylcholine and CTAB to the total metals were investigated showing its importance on the stability of nanocomposites suspension.

View Article and Find Full Text PDF

This study presents a novel idea to prepare nanocrystalline structure of TiO2 under ambient pressure at 60-65 °C using in situ sonochemical synthesis by hydrolysis of either titanium isopropoxide or titanium butoxide in an acidic aqueous solution. The nano titanium dioxide coated wool fabrics possess significant antibacterial/antifungal activity and self-cleaning property by discoloring Methylene blue stain under sunlight irradiation. This process has no negative effect on cytotoxicity and tensile strength of the sonotreated fabric even reduces alkaline solubility and photoyellowing and improves hydrophilicity.

View Article and Find Full Text PDF