Background: Hypoxia remains a challenge for the therapeutic management of head and neck squamous cell carcinoma (HNSCC). The combination of radiotherapy with nimorazole has shown treatment benefit in HNSCC, but the precise underlying molecular mechanisms remain unclear.
Purpose: To assess and to characterize the transcriptomic/epigenetic landscape of HNSCC tumor models showing differential therapeutic response to fractionated radiochemotherapy (RCTx) combined with nimorazole.
Head and neck squamous cell carcinoma (HNSCC) exhibits considerable variability in patient outcome. It has been reported that SOX2 plays a role in proliferation, tumor growth, drug resistance, and metastasis in a variety of cancer types. Additionally, SOX9 has been implicated in immune tolerance and treatment failures.
View Article and Find Full Text PDFTissue osmolarity varies among different organs and can be considerably increased under pathologic conditions. Hyperosmolarity has been associated with altered stimulatory properties of immune cells, especially macrophages and dendritic cells. We have recently reported that dendritic cells upon exposure to hypertonic stimuli shift their profile towards a macrophage-M2-like phenotype, resulting in attenuated local alloreactivity during acute kidney graft rejection.
View Article and Find Full Text PDFγδ T cell subsets can be characterized, in part, by their secretion of select proinflammatory cytokines. The molecular mechanisms driving the diverse fates of γδ T cells have not been elucidated. We have previously shown that the attachment of myristic acid to the N-terminal glycine of proteins, termed N-myristoylation, is essential for αβ T cell development and activation.
View Article and Find Full Text PDFN-myristoylation refers to the attachment of myristic acid to the N-terminal glycine of proteins and substantially affects their intracellular targeting and functions. The thymus represents an organ with a prominent N-myristoylation activity. To elucidate the role of protein N-myristoylation for thymocyte development, we generated mice with a T cell lineage-specific deficiency in N-myristoyl transferase (Nmt)1 and 2.
View Article and Find Full Text PDFDyslipidemia is a frequent component of the metabolic disorder of diabetic patients contributing to organ damage. Herein, in low-density lipoprotein receptor-deficient hyperlipidemic and streptozotozin-induced diabetic mice, hyperglycemia and hyperlipidemia acted reciprocally, accentuating renal injury and altering renal function. In hyperglycemic-hyperlipidemic kidneys, the accumulation of Tip47-positive lipid droplets in glomeruli, tubular epithelia, and macrophages was accompanied by the concomitant presence of the oxidative stress markers xanthine oxidoreductase and nitrotyrosine, findings that could also be evidenced in renal biopsy samples of diabetic patients.
View Article and Find Full Text PDFRecognition of endogenous lipid Ag(s) on CD1d is required for the development of invariant NKT (iNKT) cells. Isoglobotrihexosylceramide (iGb3) has been implicated as this endogenous selecting ligand and recently suggested to control overstimulation and deletion of iNKT cells in α-galactosidase A-deficient (αGalA(-/-)) mice (human Fabry disease), which accumulate isoglobosides and globosides. However, the presence and function of iGb3 in murine thymus remained controversial.
View Article and Find Full Text PDFBiglycan is a proteoglycan ubiquitously present in extracellular matrix of a variety of organs, including heart, and it was reported to be overexpressed in myocardial infarction. Myocardial infarction may be complicated by perimyocarditis through unknown mechanisms. Our aim was to investigate the capacity of TLR2/TLR4 ligand biglycan to enhance the presentation of specific Ags released upon cardiomyocyte necrosis.
View Article and Find Full Text PDFLiver X receptors (LXR)-α,β regulate intracellular cholesterol homeostasis and inhibit inflammatory gene expression. We studied the effects of the LXRα,β-agonist GW3965 on acute and chronic organ damage in the F344-LEW rat kidney transplantation model. In addition, to gain LXR isoform and cell-specific insights BALB/c kidneys were transplanted into mice with macrophage overexpression of LXRα (mLXRα-tg) and evaluated 7 and 42 days after transplantation.
View Article and Find Full Text PDFRhoh is a hematopoietic system-specific GTPase. Rhoh-deficient T cells have been shown to have a defect in TCR signaling manifested during their thymic development. Our aims were to investigate the phenotype of peripheral Rhoh-deficient T cells and to explore in vivo the potential benefit of Rhoh deficiency in a clinically relevant situation, in which T-cell inhibition is desirable.
View Article and Find Full Text PDFChronic inflammation and fibrosis are the leading causes of chronic allograft failure. The nuclear receptor peroxisome proliferator-activated receptor (PPAR)gamma is a transcription factor known to have antidiabetogenic and immune effects, and PPARgamma forms obligate heterodimers with the retinoid X receptor (RXR). We have reported that a retinoic acid (RAR)/RXR-agonist can potently influence the course of renal chronic allograft dysfunction.
View Article and Find Full Text PDFToll-like receptors (TLRs) recognize specific molecular patterns derived from microbial components (exogenous ligands) or stressed cells (endogenous ligands). Stimulation of these receptors leads to a pronounced inflammatory response in a variety of acute animal models. Chronic allograft dysfunction (CAD) was regarded as a candidate disease to test whether TLRs influence chronic fibrosing inflammation.
View Article and Find Full Text PDFSialic acid-containing glycosphingolipids, i.e., gangliosides, constitute a major component of neuronal cells and are thought to be essential for brain function.
View Article and Find Full Text PDFChronic allograft nephropathy is characterized by chronic inflammation and fibrosis. Because retinoids exhibit anti-proliferative, anti-inflammatory, and anti-fibrotic functions, the effects of low and high doses of 13-cis-retinoic acid (13cRA) were studied in a chronic Fisher344-->Lewis transplantation model. In 13cRA animals, independent of dose (2 or 20 mg/kg body weight/day) and start (0 or 14 days after transplantation) of 13cRA administration, serum creatinine was significantly lower and chronic rejection damage was dramatically reduced, including subendothelial fibrosis of preglomerular vessels and chronic tubulointerstitial damage.
View Article and Find Full Text PDFInflammatory infiltrates can modify (lipo)proteins via hypochlorous acid/hypochlorite (HOCl/OCl(-)) an oxidant formed by the myeloperoxidase-H(2)O(2)-halide system. These oxidatively modified proteins emerge in tubuli in some proteinuric and interstitial diseases. Human proximal tubular cells (HK-2) were used to confirm the hypothesis of detrimental and differential impact of HOCl-modified low density lipoprotein (HOCl-LDL), an in vivo occurring lipoprotein modification exerting proatherogenic and proinflammatory capacity.
View Article and Find Full Text PDFMicroarray-based gene profiling of laser-assisted microdissected tissues or clinical biopsies is still a challenge since the amount of total RNA in such samples is limited and amplification of RNA is mandatory. Representative amplification of mRNA is highly dependent on the reverse transcription reaction, which is error prone, and on the number of amplification cycles. To improve the accuracy of RNA amplification, we optimized, combined, and tested different amplification strategies for Affymetrix oligonucleotide array hybridization.
View Article and Find Full Text PDFBackground: Gene expression profiling of nephropathies may facilitate development of diagnostic strategies for complex renal diseases as well as provide insight into the molecular pathogenesis of kidney diseases. To test molecular based renal disease categorization, differential gene expression profiles were compared between control and hydronephrotic kidneys showing varying degrees of inflammation and fibrosis.
Methods: RNA expression profiles from 9 hydronephrotic and 3 control kidneys were analyzed using small macroarrays dedicated to genes involved in cell-cell contact, matrix turnover, and inflammation.
Information on over- and underexpressed genes in prostate cancer in comparison to adjacent normal tissue was sought by DNA microarray analysis. Approximately 12,600 mRNA sequences were analyzed from a total of 26 tissue samples (17 untreated prostate cancers, 9 normal adjacent to prostate cancer tissues) obtained by prostatectomy. Hierarchical clustering was performed.
View Article and Find Full Text PDF