We demonstrate a multifunctional photonic switch on silicon-on-insulator platform operating at the mid-infrared wavelength range (3.85-4.05 µm) using suspended waveguides with sub-wavelength cladding and a micro-electro-mechanical systems (MEMS) tunable waveguide coupler.
View Article and Find Full Text PDFWaveguides have been utilized for label-free and miniaturized mid-infrared gas sensors that operate on the evanescent field absorption principle. For integrated systems, photodetectors based on the photocarrier generation principle are previously integrated with waveguides. However, due to the thermal excitation of carriers at room temperature, they suffer from large dark currents and noise in the long-wavelength region.
View Article and Find Full Text PDFA novel relative humidity sensor that is based on a linear piezoelectric micromachined ultrasonic transducer (pMUT) array was proposed and microfabricated for high sensitivity, fast response, and good stability. The humidity-sensitive graphene oxide (GO) film was deposited on the pMUT array with a facile drop-casting method and characterized by scanning electron microscope (SEM), atomic force microscope (AFM), and Fourier transform infrared spectrum (FTIR). With the humidity level ranging from 10% to 90% RH, the sensor exhibited a high sensitivity of 719 Hz/% RH and an extremely high relative sensitivity of 271.
View Article and Find Full Text PDF