The quantity and variety of parameters involved in the failure evolutions in solder joints under a thermo-mechanical process directs the reliability assessment of electronic devices to be frustratingly slow and expensive. To tackle this challenge, we develop a novel machine learning framework for reliability assessment of solder joints in electronic systems; we propose a correlation-driven neural network model that predicts the useful lifetime based on the materials properties, device configuration, and thermal cycling variations. The results indicate a high accuracy of the prediction model in the shortest possible time.
View Article and Find Full Text PDFBackground: In the past few decades, a significant volume of work has been carried out on various aspects of the state estimation problem to estimate an optimum state vector of the power system. This problem has been focused on, in previous studies regarding the computational efficiency and numerical robustness in view to find point estimates for system state parameters. This current investigation, constructed confidence intervals for the unknown state parameters of the system.
View Article and Find Full Text PDFThis paper introduces a novel multiobjective approach for capacity benefit margin (CBM) assessment taking into account tie-line reliability of interconnected systems. CBM is the imperative information utilized as a reference by the load-serving entities (LSE) to estimate a certain margin of transfer capability so that a reliable access to generation through interconnected system could be attained. A new Pareto-based evolutionary programming (EP) technique is used to perform a simultaneous determination of CBM for all areas of the interconnected system.
View Article and Find Full Text PDF