Publications by authors named "Mahmud Diab"

The necessity of providing clean water sources increases the demand to develop catalytic systems for water treatment. Good pollutants adsorbers are a key ingredient, and CuO is one of the candidate materials for this task. Among the different approaches for CuO synthesis, precipitation out of aqueous solutions is a leading candidate due to the facile synthesis, high yield, sustainability, and the reported shape control by adjustment of the counter anions.

View Article and Find Full Text PDF

Switchable liquid crystal (LC) composites are a unique and attractive class of functional materials due to their extensive use in various applications including smart and privacy windows. Demand for developing smart windows with good switchable performance has steadily increasing in the past decades due to their importance in energy saving. Herein, we present the use of novel and highly active switchable LC composite material-octadecanol-doped LC-prepared via a facile, low-cost, and scalable process, for thermally or electrically controlled transparency windows.

View Article and Find Full Text PDF

A microorganism template approach has been explored for the fabrication of various well-defined three-dimensional (3D) structures. However, most of these templates suffer from small size (few μm), difficulty to remove the template, or low surface area, which affect their potential use in different applications or makes industrial scale-up difficult. Conversely, foraminifer's microorganisms are large (up to 200 mm), consist of CaCO (easy to dissolve in mild acid), and have a relatively high surface area (≈5 m g).

View Article and Find Full Text PDF

Tremendous efforts have been directed at designing functional and well-defined 3D structures in recent decades. Many approaches have been devised and are currently used to create 3D structures, including lithography, 3D printing, assembly, and template-mediated (natural or synthetic) methods. Natural scaffolds offer some unique traits, as compared to their artificial counterparts, presenting highly ordered, porous, identical, abundant, and diverse structures.

View Article and Find Full Text PDF

Hypothesis: Subjecting colloids to electric fields often results in (electrophoretic) deposition on conductive substrates. Dispersing a single-source precursor (SSP) of choice in an appropriate solvent, should allow its deposition on different substrates. The SSP-solvent interaction might play a role in the deposition (e.

View Article and Find Full Text PDF

Multi-component nanostructures of Au-CdS-ZnO with a novel morphology were synthesized by a non-conventional strategy where seeded growth is combined with solution-liquid-solid (SLS) growth. Each of these synthetic routes is used for growing a different domain of the final heterostructure, where ZnO rods are grown first on Au nanoparticles via heterogeneous nucleation while CdS is later grown between these two domains via SLS, using the Au tip of the preformed Au-ZnO as a catalyst. The in situ alloying of the Au tip with Cd enabled the metal tip to function as an SLS catalyst at a relatively mild reaction temperature which is lower than the melting point of pure Au.

View Article and Find Full Text PDF

Multi-component nanostructures have been attracting tremendous attention due to their ability to form novel materials with unique chemical, optical and physical properties. Development of hybrid nanostructures that are composed of metal-semiconductor components using a simple approach is of interest. Herein, we report a robust and general organic phase synthesis of metal (Au or Ag)-Zinc chalcogenide (ZnS or ZnSe) core-shell nanostructures.

View Article and Find Full Text PDF

Hybrid nanostructures combining zinc oxide (ZnO) and a metal sulfide (MS) semiconductor are highly important for energy-related applications. Controlled filling and coating of vertically aligned ZnO nanowire arrays with different MS materials was achieved via the thermal decomposition approach of single-source precursors in the gas phase by using a simple atmospheric-pressure chemical vapor deposition system. Using different precursors allowed us to synthesize multicomponent structures such as nanowires coated with alloy shell or multishell structures.

View Article and Find Full Text PDF

Hematite (α-Fe2O3) is one of most investigated oxides for energy applications and specifically for photocatalysis. Many approaches are used to prepare well-controlled films of hematite with good photocatalytic performance. However, most of these methods suffer from a number of disadvantages, such as the small quantities of the product, and the assembly of the nanostructures is usually a secondary process.

View Article and Find Full Text PDF

Hybrid nanostructures of metal (Cu, Au, Ag)-ZnO nanopyramids were synthesized. These hybrid nanostructures possess two distinct morphologies where the metal can be selectively attached to either the base or the tip of the ZnO pyramids. This is the first time that such morphologies are reported for Cu-ZnO and Ag-ZnO hybrid nanostructures.

View Article and Find Full Text PDF