Publications by authors named "Mahmud Bani-Yaghoub"

Zika virus (ZIKV) is a flavivirus that is highly neurotropic causing congenital abnormalities and neurological damage to the central nervous systems (CNS). In this study, we used a human induced pluripotent stem cell (iPSC)-derived blood brain barrier (BBB) model to demonstrate that ZIKV can infect brain endothelial cells (i-BECs) without compromising the BBB barrier integrity or permeability. Although no disruption to the BBB was observed post-infection, ZIKV particles were released on the abluminal side of the BBB model and infected underlying iPSC-derived neural progenitor cells (i-NPs).

View Article and Find Full Text PDF

We have developed a renewable, scalable and transgene free human blood-brain barrier model, composed of brain endothelial cells (BECs), generated from human amniotic fluid derived induced pluripotent stem cells (AF-iPSC), which can also give rise to syngeneic neural cells of the neurovascular unit. These AF-iPSC-derived BECs (i-BEC) exhibited high transendothelial electrical resistance (up to 1500 Ω cm) inducible by astrocyte-derived molecular cues and retinoic acid treatment, polarized expression of functional efflux transporters and receptor mediated transcytosis triggered by antibodies against specific receptors. In vitro human BBB models enable pre-clinical screening of central nervous system (CNS)-targeting drugs and are of particular importance for assessing species-specific/selective transport mechanisms.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a leading cause of morbidity and mortality worldwide. Due to its high incidence rate and often long-term sequelae, TBI contributes significantly to increasing costs of health care expenditures annually. Unfortunately, advances in the field have been stifled by patient and injury heterogeneity that pose a major challenge in TBI prevention, diagnosis, and treatment.

View Article and Find Full Text PDF

Objective: Diabetic ketoacidosis in children is associated with vasogenic cerebral edema, possibly due to the release of destructive polymorphonuclear neutrophil azurophilic enzymes. Our objectives were to measure plasma azurophilic enzyme levels in children with diabetic ketoacidosis, to correlate plasma azurophilic enzyme levels with diabetic ketoacidosis severity, and to determine whether azurophilic enzymes disrupt the blood-brain barrier in vitro.

Design: Prospective clinical and laboratory study.

View Article and Find Full Text PDF

Introduction: The majority of therapeutics, small molecule or biologics, developed for the CNS do not penetrate the blood-brain barrier (BBB) sufficiently to induce pharmacologically meaningful effects on CNS targets. To improve the efficiency of CNS drug discovery, several in vitro models of the BBB have been used to aid early selection of molecules with CNS exposure potential. However, correlative studies suggest relatively poor predictability of in vitro BBB models underscoring the need to combine in vitro and in vivo BBB penetration assessment into an integrated preclinical workflow.

View Article and Find Full Text PDF

S-nitrosoglutathione (GSNO) is an endogenously produced S-nitrosylating compound that controls the function of various proteins. While a number of rodent cell lines have been used to study GSNO-induced apoptosis, the mechanisms of action remain to be evaluated in human cells and in parallel with other common apoptosis-inducing agents. In this study, we compared the pro-apoptotic effects of GSNO and staurosporine (STS) on human neural progenitors (NT2, hNP1) and neuroblasts (SH-SY5Y).

View Article and Find Full Text PDF

Brain injury continues to be one of the leading causes of disability worldwide. Despite decades of research, there is currently no pharmacologically effective treatment for preventing neuronal loss and repairing the brain. As a result, novel therapeutic approaches, such as cell-based therapies, are being actively pursued to repair tissue damage and restore neurological function after injury.

View Article and Find Full Text PDF

There is a need for improved therapy for acquired brain injury, which has proven resistant to treatment by numerous drugs in clinical trials and continues to represent one of the leading causes of disability worldwide. Research into cell-based therapies for the treatment of brain injury is growing rapidly, but the ideal cell source has yet to be determined. Subpopulations of cells found in amniotic fluid, which is readily obtained during routine amniocentesis, can be easily expanded in culture, have multipotent differentiation capacity, are non-tumourigenic, and avoid the ethical complications associated with embryonic stem cells, making them a promising cell source for therapeutic purposes.

View Article and Find Full Text PDF

The amniotic membrane (AM) and amniotic fluid (AF) have a long history of use in surgical and prenatal diagnostic applications, respectively. In addition, the discovery of cell populations in AM and AF which are widely accessible, nontumorigenic and capable of differentiating into a variety of cell types has stimulated a flurry of research aimed at characterizing the cells and evaluating their potential utility in regenerative medicine. While a major focus of research has been the use of amniotic membrane and fluid in tissue engineering and cell replacement, AM- and AF-derived cells may also have capabilities in protecting and stimulating the repair of injured tissues via paracrine actions, and acting as vectors for biodelivery of exogenous factors to treat injury and diseases.

View Article and Find Full Text PDF

Nitric oxide (NO) plays a key role in neurogenesis as a regulator of cell proliferation and differentiation. NO is synthesized from the amino acid L-arginine by nitric oxide synthases (NOS1, NOS2, and NOS3), which are encoded by separate genes and display different tissue distributions. We used an in vitro model of RA-induced neural differentiation of NT2 cells to examine which of the three NO-synthesizing enzymes is involved in this process.

View Article and Find Full Text PDF

The usage of stem cells is a promising strategy for the repair of damaged tissue in the injured brain. Recently, amniotic fluid (AF) cells have received a lot of attention as an alternative source of stem cells for cell-based therapies. However, the success of this approach relies significantly on proper interactions between graft and host tissue.

View Article and Find Full Text PDF

Bone morphogenetic protein 7 (BMP7), a member of the transforming growth factor β (TGF-β) superfamily, plays important roles in the development of various tissues and organs in mouse and human. In particular, BMP7 is critical for the formation of the nervous system and it is considered to have therapeutic potential in brain injury and stroke. One approach to make BMP7 more suitable for therapeutic purposes is the development of efficient vectors that allow the consistent, reliable and cost-effective production of the BMP7 protein.

View Article and Find Full Text PDF

Brain injury can lead to irreversible tissue loss and functional deficit along with significant health care costs. Raman spectroscopy can be used as a non-invasive technique to provide detailed information on the molecular composition of diseased and damaged tissues. This technique was used to examine acute mouse brain injury, focusing on the motor cortex, a region directly involved in controlling execution of movement.

View Article and Find Full Text PDF

We previously identified four functionally distinct human NUMB isoforms. Here, we report the identification of two additional isoforms and propose a link between the expression of these isoforms and cancer. These novel isoforms, NUMB5 and NUMB6, lack exon 10 and are expressed in cells known for polarity and migratory behavior, such as human amniotic fluid cells, glioblastoma and metastatic tumor cells.

View Article and Find Full Text PDF

The NOTCH signaling pathway plays important roles in stem cell maintenance, cell-fate determination and differentiation during development. Following ligand binding, the cleaved NOTCH intracellular domain (NICD) interacts directly with the recombinant signal binding protein for immunoglobulin kappa J region (RBPJ) transcription factor and the resulting complex targets gene expression in the nucleus. To date, four human RBPJ isoforms have been described in Entrez Gene, varying in the first 5'coding exons.

View Article and Find Full Text PDF

Recently, human amniotic fluid (AF) cells have attracted a great deal of attention as an alternative cell source for transplantation and tissue engineering. AF contains a variety of cell types derived from fetal tissues, of which a small percentage is believed to represent stem cell sub-population(s). In contrast to human embryonic stem (ES) cells, AF cells are not subject to extensive legal or ethical considerations; nor are they limited by lineage commitment characteristic of adult stem cells.

View Article and Find Full Text PDF

Neuro 2A (N2a) is a mouse neural crest-derived cell line that has been extensively used to study neuronal differentiation, axonal growth and signaling pathways. A convenient characteristic of these cells is their ability to differentiate into neurons within a few days. However, most differentiation methods reported for N2a cells do not provide information about the neuronal types obtained after each treatment.

View Article and Find Full Text PDF

Myosin phosphatase target subunit 1 (MYPT1), together with catalytic subunit of type1 delta isoform (PP1cdelta) and a small 20-kDa regulatory unit (M20), form a heterotrimeric holoenzyme, myosin phosphatase (MP), which is responsible for regulating the extent of myosin light chain phosphorylation. Here we report the identification and characterization of a molecular interaction between Seven in absentia homolog 2 (SIAH2) and MYPT1 that resulted in the proteasomal degradation of the latter in mammalian cells, including neurons and glia. The interaction involved the substrate binding domain of SIAH2 (aa 116-324) and a central region of MYPT1 (aa 445-632) containing a degenerate consensus Siah-binding motif RLAYVAP (aa 493-499) evolutionally conserved from fish to humans.

View Article and Find Full Text PDF

Adrenergic receptors are a key component of nanoscale multiprotein complexes that are responsible for controlling the beat rate in a mammalian heart. We demonstrate the ability of near-field scanning optical microscopy (NSOM) to visualize beta(2)-adrenergic receptors (beta(2)AR) fused to the GFP analogue Venus at the nanoscale on HEK293 cells. The expression of the beta(2)AR-Venus fusion protein was tightly controlled using a tetracycline-induced promoter.

View Article and Find Full Text PDF

Every year thousands of people suffer from brain injuries and stroke, and develop motor, sensory, and cognitive problems as a result of neuronal loss in the brain. Unfortunately, the damaged brain has a limited ability to enact repair and current modes of treatment are not sufficient to offset the damage. An extensive list of growth factors, neurotrophic factors, cytokines, and drugs has been explored as potential therapies.

View Article and Find Full Text PDF

SOX2 is a key neurodevelopmental gene involved in maintaining the pluripotency of stem cells and proliferation of neural progenitors and astroglia. Two evolutionally conserved enhancers, SRR1 and SRR2, are involved in controlling SOX2 expression during neurodevelopment; however, the molecular mechanisms regulating their activity are not known. We have examined DNA methylation and histone H3 acetylation at both enhancers in NT2-D1 progenitors, neurons and astrocytes, to establish the role of epigenetic mechanisms in cell-type-specific SOX2 expression.

View Article and Find Full Text PDF

Loss of numb function suggests that numb maintains progenitors in an undifferentiated state. Herein, we demonstrate that numb1 and numb3 are expressed in undifferentiated cortical progenitors, whereas numb2 and numb4 become prominent throughout differentiation. To further assess the role of different numb isoforms in cortical neural development, we first created a Numb-null state with antisense morpholino, followed by the re-expression of specific numb isoforms.

View Article and Find Full Text PDF

Gap junctions have traditionally been described as transmembrane channels that facilitate intercellular communication via the passage of small molecules. Connexins, the basic building blocks of gap junctions, are expressed in most mammalian tissues including the developing and adult central nervous system. During brain development, connexins are temporally and spatially regulated suggesting they play an important role in the proper formation of the central nervous system.

View Article and Find Full Text PDF

The mammalian neocortex is established from neural stem and progenitor cells that utilize specific transcriptional and environmental factors to create functional neurons and astrocytes. Here, we examined the mechanism of Sox2 action during neocortical neurogenesis and gliogenesis. We established a robust Sox2 expression in neural stem and progenitor cells within the ventricular zone, which persisted until the cells exited the cell cycle.

View Article and Find Full Text PDF