Publications by authors named "Mahmud Ashrafizaadeh"

Introduction And Hypothesis: This study aims to develop a fluid-structural interaction (FSI) method to pinpoint the effects of pressure changes inside the bladder and their impact on the supporting structure and the urethra mobility.

Methods: A physiological model of the nulliparous female pelvis, including the organs, supportive structures, and urine, was developed based on magnetic resonance images. Soft tissues with nonlinear hyperelastic material characteristics were modeled.

View Article and Find Full Text PDF

In this study, the interaction energy () of suvorexant (as an orexin receptor antagonist) and some of its analogues with the important residues of the human OX2 orexin receptor, determined by molecular docking, is calculated using the symmetry-adapted perturbation theory-density functional theory (SAPT (DFT)) method. Also, the important residues with the dominant interaction with each ligand are determined based on the obtained SAPT (DFT) interaction energies. To analyze the interaction of the receptor with each ligand, the decomposition of to its constituent components including electrostatic (), exchange (), induction (), and exchange-induction (), dispersion (), and exchange-dispersion () is performed.

View Article and Find Full Text PDF

In this study, the SAPT (DFT) method is used to determine the components of the electronic interaction energies (electrostatic (E), exchange (E), induction (E), exchange-induction (E), dispersion (E), and exchange-dispersion (E)) between the several selected flavonoids and the important residues of the active site of Escherichia coli DNA Gyr determined by molecular docking. A significant linear correlation between the calculated SAPT (DFT) interaction energies of flavonoids and their experimental pIC50 values is found, which is not observed for the free binding energies (ΔG) of flavonoids obtained from molecular docking. The variation of the interaction energy components of flavonoids with their structural differences is investigated to find the relation between the flavonoids structures and their biological activity based on the interaction energy components.

View Article and Find Full Text PDF

In this research, the development of a pseudopotential multicomponent model with the capability of simulating high-viscosity-ratio flows is discussed and examined. The proposed method is developed based on the non-orthogonal central moments model in the lattice Boltzmann method, and the exact difference model (EDM) is used to apply the intercomponent interaction force. In contrast to the original Shan-Chen model, in which the applying force has the viscosity-dependent error term, the error term of this model does not depend on the viscosity.

View Article and Find Full Text PDF

A meshless lattice Boltzmann numerical method is proposed. The collision and streaming operators of the lattice Boltzmann equation are separated, as in the usual lattice Boltzmann models. While the purely local collision equation remains the same, we rewrite the streaming equation as a pure advection equation and discretize the resulting partial differential equation using the Lax-Wendroff scheme in time and the meshless local Petrov-Galerkin scheme based on augmented radial basis functions in space.

View Article and Find Full Text PDF

Guest molecules in nonspherical cages of inclusion compounds can possess non-uniform spatial distributions and motion. This can lead to anisotropic lineshapes in the solid-state NMR spectra of the guest species. In this work, we use our previously developed molecular dynamics-based methodology to calculate the lineshape anisotropy of guest CO species in cages of the structure I (sI) clathrate hydrate as an example of the above phenomenon.

View Article and Find Full Text PDF

We use molecular dynamics simulations to study the structure, dynamics, and details of the mechanism of congruent melting of the equimolar mixture of 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide with benzene, [emim][NTf(2)]C(6)H(6). Changes in the molecular arrangement, radial distribution functions, and the dynamic behavior of species are used to detect the solid to liquid transition, show an indication of the formation of polar islands by aggregating of the ions in the liquid phase, and characterize the melting process. The predicted enthalpy of melting DeltaH(m)=38+/-2 kJ mol(-1) for the equimolar inclusion mixture at 290 K is in good agreement with the differential scanning calorimetry experimental results of 42+/-2 kJ mol(-1).

View Article and Find Full Text PDF

A systematic molecular dynamics study is performed to determine the dynamics and transport properties of 12 room-temperature ionic liquids family with 1-alkyl-3-methylimidazolium cation, [amim](+) (alkyl = methyl, ethyl, propyl, and butyl), with counterions, PF(6)(-), NO(3)(-), and Cl(-). The goal of the work is to provide molecular level understanding of the transport coefficients of these liquids as guidance to experimentalists on choosing anion and cation pairs to match required properties of ionic liquid solvents. In the earlier paper (Part I), we characterized the dynamics of ionic liquids and provided a detailed comparison of the diffusion coefficients for each ion using the Einstein and Green-Kubo formulas.

View Article and Find Full Text PDF

Molecular dynamics simulations are used to study the dynamics and transport properties of 12 room-temperature ionic liquids of the 1-alkyl-3-methylimidazolium [amim](+) (alkyl = methyl, ethyl, propyl, and butyl) family with PF(6)(-), NO(3)(-), and Cl(-) counterions. The explicit atom transferable force field of Canongia Lopes et al. [J.

View Article and Find Full Text PDF