Tunable optical materials are indispensable elements in modern optoelectronics, especially in integrated photonics circuits where precise control over the effective refractive index is essential for diverse applications. Two-dimensional materials like transition metal dichalcogenides (TMDs) and graphene exhibit remarkable optical responses to external stimuli. However, achieving distinctive modulation across short-wave infrared (SWIR) regions while enabling precise phase control at low signal loss within a compact footprint remains an ongoing challenge.
View Article and Find Full Text PDFThe growing freshwater scarcity has caused increased use of membrane desalination of seawater as a relatively sustainable technology that promises to provide long-term solution for the increasingly water-stressed world. However, the currently used membranes for desalination on an industrial scale are inevitably prone to fouling that results in decreased flux and necessity for periodic chemical cleaning, and incur unacceptably high energy cost while also leaving an environmental footprint with unforeseeable long-term consequences. This extant problem requires an immediate shift to smart separation approaches with self-cleaning capability for enhanced efficiency and prolonged operational lifetime.
View Article and Find Full Text PDFThe emergence of large language models has led to the development of powerful tools such as ChatGPT that can produce text indistinguishable from human-generated work. With the increasing accessibility of such technology, students across the globe may utilize it to help with their school work-a possibility that has sparked ample discussion on the integrity of student evaluation processes in the age of artificial intelligence (AI). To date, it is unclear how such tools perform compared to students on university-level courses across various disciplines.
View Article and Find Full Text PDFAn efficient, dual-polarization silicon waveguide array with low insertion losses and negligible crosstalks for both TE and TM polarizations has been reported using S-shaped adiabatically bent waveguides. Simulation results for a single S-shaped bend show an insertion loss (IL) of ≤ 0.03 dB and ≤ 0.
View Article and Find Full Text PDFThe outstanding performance and facile processability turn two-dimensional materials (2DMs) into the most sought-after class of semiconductors for optoelectronics applications. Yet, significant progress has been made toward the hybrid integration of these materials on silicon photonics (SiPh) platforms for a wide range of mid-infrared (MIR) applications. However, realizing 2D materials with a strong optical response in the NIR-MIR and excellent air stability is still a long-term goal.
View Article and Find Full Text PDFWe demonstrate a novel TE-pass polarizer, to the best of our knowledge, on a silicon-on-insulator (SOI) platform. The device's working principle is based on the phase-matched coupling of the unwanted TM0 mode in an input waveguide to the TM1 mode in a tapered directional coupler (DC), which is then guided through a low-loss bend (180-degree) and scattered in a terminator section with low back reflections. However, the input TE0 mode is routed through the tapered section uncoupled with negligible loss.
View Article and Find Full Text PDFWe design and experimentally demonstrate an ultra-compact 1310/1550 nm wavelength diplexer based on a multimode interference (MMI) coupler. The proposed device is designed at the first imaging length for 1550 nm wavelength resulting in an MMI length of only 41 µm. In order to improve the extinction ratio, the output ports are made asymmetric in width.
View Article and Find Full Text PDFA compact, ultra-broadband and high-performance silicon TE-pass polarizer is proposed and demonstrated experimentally. It is based on partially-etched (ridge) waveguide adiabatic S-bends, input/output tapers and side gratings on a silicon-on-insulator (SOI) platform. A compact footprint and weak back reflections are obtained due to the bent waveguide and the tapers, respectively.
View Article and Find Full Text PDFThe outstanding performance and facile processability turn hybrid organic-inorganic perovskites into one of the most sought-after classes of semiconducting materials for optoelectronics. Yet, their translation into real-world applications necessitates that challenges with their chemical stability and poor mechanical robustness are first addressed. Here, centimeter-size single crystals of methylammoniumlead(II) iodide (MAPbI ) are reported to be capable of autonomous self-healing under minimal compression at ambient temperature.
View Article and Find Full Text PDFRecent theoretical studies proposed that two-dimensional (2D) GaGeTe crystals have promising high detection sensitivity at infrared wavelengths and can offer ultra-fast operation. This can be attributed to their small optical bandgap and high carrier mobility. However, experimental studies on GaGeTe in the infrared region are lacking and this exciting property has not been explored yet.
View Article and Find Full Text PDFWe present an experimental analysis of optical Physically Unclonable Functions enhanced using plasmonic metal nanoparticles in a Silicon on Insulator based integrated structure. We experimentally demonstrate the behavior of possible configurations of simple PUF structures defined only by the nanoparticle distribution. The devices show a promising response when tested with transverse magnetic polarized light.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2021
We report the first organic semiconductor crystal with a unique combination of properties that can be used as a multifunctional optoelectronic device. Mechanically flexible single crystals of 9,10-bis(phenylethynyl)anthracene (BPEA) can function as a phototransistor, photoswitch, and an optical waveguide. The material can exist as two structurally different solid phases, with single crystals of one of the phases being elastic at room temperature while those of the other are brittle and become plastic at higher temperature.
View Article and Find Full Text PDFWe report an all-silicon thermally insensitive (-1.5/) 2×2 Mach-Zehnder interferometer (MZI) over a spectral range from 1540 to 1620 nm. Additionally, the proposed MZI exhibits no imbalance in its extinction ratio with temperature.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2021
Novel group IV - V 2D semiconductors (e.g., GeAs and SiAs) have arisen as an attractive candidate for broad-band photodetection and optoelectronic applications.
View Article and Find Full Text PDFLayered two-dimensional (2D) materials with broadband photodetection capability have tremendous potential in the design and engineering of future optoelectronics devices. To date, studies of 2D semiconductors are actively focused on graphene, black phosphorus, and black arsenic phosphorus as attractive candidates. So far, however, novel group IV-V 2D semiconductors (e.
View Article and Find Full Text PDFGraphene has emerged as an ultrafast optoelectronic material for all-optical modulators. However, because of its atomic thickness, it absorbs a limited amount of light. For that reason, graphene-based all-optical modulators suffer from either low modulation efficiencies or high switching energies.
View Article and Find Full Text PDFOrganic crystals are emerging as mechanically compliant, light-weight and chemically versatile alternatives to the commonly used silica and polymer waveguides. However, the previously reported organic crystals were shown to be able to transmit visible light, whereas actual implementation in telecommunication devices requires transparency in the near-infrared spectral range. Here we demonstrate that single crystals of the amino acid L-threonine could be used as optical waveguides and filters with high mechanical and thermal robustness for transduction of signals in the telecommunications range.
View Article and Find Full Text PDFStrain engineering of germanium has recently attracted tremendous research interest. The primary goal of this approach is to exploit mechanical strain to tune the electrical and optical properties of Ge to ultimately achieve an on-chip light source compatible with silicon technology. Additionally, this can result in enhanced electrical performance for high-speed optoelectronic applications.
View Article and Find Full Text PDFHere, we propose a waveguide-integrated plasmonic Schottky photodetector (PD) operating based on an internal photoemission process with a titanium nitride plasmonic material. The theoretically examined structure employs an asymmetric metal-semiconductor-metal waveguide configuration with one of the electrodes being gold and the second being either gold, titanium, or titanium nitride. For the first time, we measured a Schottky barrier height of 0.
View Article and Find Full Text PDFLow-dimensional semiconductor structurers formed on a substrate surface at pre-defined locations and with nano-precision placement is of vital interest. The potential of tailoring their electrical and optical properties will revolutionize the next generation of optoelectronic devices. Traditionally, highly aligned self-assembly of semiconductors relies on Stranski- Krastanov growth mode.
View Article and Find Full Text PDFHeat-Assisted Magnetic Recording (HAMR) is a well-known technology that uses the concept of a plasmonic antenna to shrink the optical focused spot to sizes of tens of nanometers, in order to overcome the limits of conventional magnetic recording and to reach areal density >1 Tb/in. In this paper, we propose a novel concept that allows to increase a power transfer to the recording media deposited on the patterned substrate that takes a full advantage of the resonant antenna conditions to achieve further intensity enhancement in the gap and consequently high-power transfer to the recording media. Apart from the high field enhancement, the proposed concept ensures uniform field distribution in the gap that translates into uniform and higher temperature in the recording media, which is highly desired in the HAMR technology.
View Article and Find Full Text PDFMicro-Electro-Mechanical Systems (MEMS) devices are widely used for motion, pressure, light, and ultrasound sensing applications [...
View Article and Find Full Text PDFHere we propose an original waveguide-integrated plasmonic Schottky photodetector that takes full advantage of a thin metal stripe embedded entirely into a semiconductor. The photodetector is based on the long-range dielectric-loaded surface plasmon polariton waveguide with a metal stripe deposited on top of a semiconductor rib and covered by another semiconductor. As the metal stripe is entirely surrounded by semiconductor, all hot electrons with appropriate k-vectors can participate in transitions that highly enhances the electron transfer, and consequently the internal quantum efficiency.
View Article and Find Full Text PDF