Caffeine and purine derivatives represent interesting chemical moieties, which show various biological activities. Caffeine is an alkaloid that belongs to the family of methylxanthine alkaloids and it is present in food, beverages, and drugs. Coffee, tea, and some other beverages are a major source of caffeine in the human diet.
View Article and Find Full Text PDFBackground: Several chromene derivatives have a wide variety of biological and pharmacological activity. They had anticancer activity, antimicrobial activity, antituberculosis activity, anticonvulsant activity, antidiabetic activity, antichlolinesterase activity, and inhibitor of monoamine oxidase activity. The above-mentioned activities directed us to synthesize novel chromene derivatives, chromeno[2,3-d][1,3]oxazines, and chromeno[2,3-d]pyrimidines.
View Article and Find Full Text PDFIt is critical to take safety action if carcinogenic heavy metals and ammonia can be detected quickly, cheaply, and selectively in an environmental sample. As a result, compound 4a [4-(1-(2-(2,4-Dinitrophenyl)hydrazineylidene)-3-(naphthalen-2-yl)allyl)-5-methyl-1-phenyl-1 H-1,2,3-triazole] and compound 4b [4-(1-(2-(2,4-Dinitrophenyl)hydrazineylidene)-3-(naphthalen-2-yl)allyl)-1-(4-fluorophenyl)-5-methyl-1 H-1,2,3-triazole] were prepared. The aldol condensation process of 4-acetyl-1,2,3-triazoles 1a,b (Ar = CH; 4-FCH) with 2-naphthaldehyde yields 1-acetyl-1,2,3-triazoles 1a,b (Ar = CH; 4-FCH) (5-methyl-1-aryl-1 H-1,2,3-triazol-4-yl) -3-(naphthalen-2-yl)prop-2-en-1-ones 3a,b with a yield of around 95%.
View Article and Find Full Text PDFArch Pharm (Weinheim)
August 2019
This mini-review describes the interaction between small molecules and RNA, in addition to its application either in treating RNA-associated diseases or detecting target molecules. In the case of RNA-associated disease treatment, the designed small molecules interact with RNA sites, forming adducts and providing successful therapeutic strategies over oligonucleotides. On the other hand, synthetically designed RNA moieties (aptamers) interact with target molecules like toxins, drugs, hormones; these interactions are useful in the detection, quantification or separation of these target moieties.
View Article and Find Full Text PDF