Publications by authors named "Mahmoud M Elnaggar"

Tuberculosis has a negative economic impact on buffalo farming, and it poses a potential threat to human health. Interferon-gamma (IFN-γ) plays a central role in protection against mycobacterial diseases, illustrating the importance of T-cell mediated immune responses in tuberculosis infection. Recently, the expression of Caspase-3, a critical executor of apoptosis, in M.

View Article and Find Full Text PDF

Opportunities to include Cetancodontamorpha in the study of the evolution of the immune system in the clades of Artiodactylamorpha, Ruminantiamorpha, Suinamorpha, and Camelidamorpha have increased with the use of the bottlenose dolphin, Tursiops truncatus, as a sentinel species to study the effects of environmental pollutants on the health of marine mammals. Efforts are currently underway to increase the number reagents needed for detailed studies. Thus far, screening of monoclonal antibodies (mAbs) made to leukocyte differentiation molecules (LDM) and the major histocompatibility (MHC) class I and class II molecules in Ruminantiamorpha have yielded some mAbs that recognize conserved epitopes expressed on orthologues in the bottlenose dolphin.

View Article and Find Full Text PDF

Progress in the study of the immune response to pathogens and candidate vaccines has been impeded by limitations in the methods to study the functional activity of T-cell subsets proliferating in response to antigens processed and presented by antigen presenting cells (APC). As described in this review, during our studies of the bovine immune response to a candidate peptide-based vaccine and candidate deletion mutants in () and (BCG), we developed methods to study the primary and recall CD4 and CD8 T-cell responses using an platform. An assay was developed to study intracellular killing of bacteria mediated by CD8 T cells using quantitative PCR to distinguish live bacteria from dead bacteria in a mixed population of live and dead bacteria.

View Article and Find Full Text PDF

Lack of understanding of the immune response to mycobacterial pathogens has impeded progress in development of vaccines. Infection leads to development of an immune response that controls infection but is unable to eliminate the pathogen, resulting in a persistent infection. Although this puzzle remains to be solved, progress has been made using cattle as a model species to study the immune response to a prototypic mycobacterium, ().

View Article and Find Full Text PDF

The apicomplexan hemoparasite, , causes East Coast fever (ECF), a frequently fatal disease of African cattle. Vaccine development has been impeded by incomplete understanding of protective immunity following natural exposure or the infection and treatment method (ITM) of immunization. This is attributable to a paucity of methods to characterize the memory T-cell repertoire following infection.

View Article and Find Full Text PDF

Studies with Mycobacterium avium subsp. paratuberculosis (Map) in cattle revealed deletion of relA, a global regulator gene, abrogated ability of the mutant to establish a persistent infection, attributed to development of an immune response that cleared infection. Analysis of the recall response demonstrated presence of CD8 cytotoxic T cells that kill intracellular bacteria.

View Article and Find Full Text PDF

Studies focused on development of an attenuated vaccine against subsp. (), the causative agent of paratuberculosis (Ptb) in cattle and other species, revealed that deletion of , a global gene regulator, abrogates the ability of to establish a persistent infection. In the absence of , cattle develop CD8 cytotoxic T cells (CTL) with the ability to kill intracellular bacteria.

View Article and Find Full Text PDF

Studies in cattle show CD8 cytotoxic T cells (CTL), with the ability to kill intracellular bacteria, develop following stimulation of monocyte-depleted peripheral blood mononuclear cells (mdPBMC) with antigen presenting cells (APC, i.e. conventional dendritic cells [cDC] and monocyte-derived DC [MoDC]) pulsed with MMP, a membrane protein from Mycobacterium avium subsp.

View Article and Find Full Text PDF

Objective: To evaluate the feasibility of stem cell isolation from falciform fat harvested via laparoscopic morcellation.

Study Design: Pilot study.

Animals: Eleven client-owned dogs.

View Article and Find Full Text PDF

Previous studies on the immune system of water buffalo (Bubalus bubalis) using cross-reactive monoclonal antibodies (mAbs) revealed significant similarities and differences to the bovine immune system. Herein, we extend these studies and document the pattern of expression of CD14, CD16, CD163 and CD172a on buffalo leukocytes using a set of cross-reactive mAbs that are known to recognize conserved epitopes within orthologous molecules in cattle, sheep and goats. Buffalo leukocytes were isolated and subjected to mAb labelling for flow cytometry.

View Article and Find Full Text PDF

Recent efforts to develop a live attenuated vaccine against Mycobacterium avium subsp. paratuberculosis (Map), the causative agent of Johne's disease (JD), revealed relA is important in Map virulence. Deletion of the relA gene impairs the ability of Map to establish a persistent infection.

View Article and Find Full Text PDF

Efforts to develop live attenuated vaccines against Mycobacterium avium subspecies paratuberculosis (Map), using indirect methods to screen Map deletion mutants for potential efficacy, have not been successful. A reduction in the capacity to survive in macrophages has not predicted the ability of mutants to survive in vivo. Previous studies for screening of three deletion mutants in cattle and goats revealed one mutant, with a deletion in relA (ΔMap/relA), could not establish a persistent infection.

View Article and Find Full Text PDF

As part of our ongoing program to expand immunological reagents available for research in cattle, we developed a monoclonal antibody (mAb) to bovine interleukin-17A (IL-17A), a multifunctional cytokine centrally involved in regulating innate and adaptive immune responses. Initial comparative studies demonstrated the mAb recognizes a conserved epitope expressed on orthologues of IL-17A in sheep, goats and pigs. Comparative flow cytometric analyses of lymphocyte subsets stimulated with phorbol 12-myristate 13-acetate (PMA) and ionomycin revealed differences in expression of IL-17A by CD4, CD8, and γδ T cells across ruminants and swine species.

View Article and Find Full Text PDF

The slow progress in understanding immunotoxic effects of environmental contaminants and their influence on disease susceptibility in whales is largely due to the limited information available on the immune systems and immune function of species included in the Cetancodontamorpha clade. Studies in species in the other major clades included in the Artiodactylamorpha, Ruminantiamorpha, Suinamorpha, and Camelidamorpha have revealed the immune systems are similar, but not identical. The present study was undertaken to expand the available monoclonal antibody reagents needed to gain insight into the composition, function, and evolution of the immune system in Cetancodontamorpha, using the dolphin (Tursiops truncatus) as a model cetacean species.

View Article and Find Full Text PDF

Bovine tuberculosis (bTB) is a major world-wide health problem that has been difficult to control, due to the lack of an effective vaccine and limited ability of the tuberculin skin test (TST) and the ancillary whole blood interferon-gamma (IFN-γ) release assay (IGRA) to detect all infected animals. A 6 h cytokine flow cytometric IFN-γ (CFC) assay was developed in effort to overcome these limitations and expand methods for studying the mechanisms of bTB immunopathogenesis. The present study was conducted to evaluate IL-1β as a biomarker to use in conjunction with the IFN-γ CFC assay to improve the diagnostic accuracy for bTB.

View Article and Find Full Text PDF

Although buffaloes (Bubalus bubalis) are a major component of the livestock industry worldwide, limited progress has been made in the study of the mechanisms regulating the immune response to pathogens and parasites affecting their health and productivity. This has been, in part, attributable to the limited availability of reagents to study immune responses in buffalo. As reported here, a set of cross-reactive monoclonal antibodies (mAbs), developed against bovine, ovine and caprine leukocyte differentiation molecules (LDM) and major histocompatibility complex (MHC) molecules, were identified and used to compare expression of LDM in Italian and Egyptian buffalo.

View Article and Find Full Text PDF

Phylogenic comparisons of the mononuclear phagocyte system (MPS) of humans and mice demonstrate phenotypic divergence of dendritic cell (DC) subsets that play similar roles in innate and adaptive immunity. Although differing in phenotype, DC can be classified into four groups according to ontogeny and function: conventional DC (cDC1 and cDC2), plasmacytoid DC (pDC), and monocyte derived DC (MoDC). DC of Artiodactyla (pigs and ruminants) can also be sub-classified using this system, allowing direct functional and phenotypic comparison of MoDC and other DC subsets trafficking in blood (bDC).

View Article and Find Full Text PDF

The sequencing of the bovine genome and development of mass spectrometry, in conjunction with flow cytometry (FC), have afforded an opportunity to complete the characterization of the specificity of monoclonal antibodies (mAbs), only partially characterized during previous international workshops focused on antibody development for livestock (1991, Leukocyte Antigens in Cattle, Sheep, and Goats; 1993, Leukocyte Antigens of Cattle and Sheep; 1996, Third Workshop on Ruminant Leukocyte Antigens). The objective of this study was to complete the characterization of twelve mAbs incompletely characterized during the workshops that reacted with molecules predominantly expressed on bovine monocytes and use them to provide further information on the phenotypic complexity of monocyte subsets in ruminants. Analysis revealed that the mAbs could be grouped into three clusters that recognize three different molecules: CD11c, CD14, and CD163.

View Article and Find Full Text PDF

Control of bovine tuberculosis (bTB) continues to be a problem world-wide because of difficulties in identifying infected animals at all stages of infection. The use of the IFN-γ release assays (IGRA) as an ancillary test with the tuberculin skin tests has improved the ability to identify infected animals. However, infected animals may still be missed.

View Article and Find Full Text PDF