Publications by authors named "Mahmoud M Abdelnaby"

Carbon dioxide (CO) adsorption on solid sorbents represents a promising technology for separating carbon from different sources and mitigating anthropogenic emissions. The complete integration of carbon capture technologies in various industrial sectors will be crucial for a sustainable, low-carbon future. Despite developing new sorbents, a comprehensive strategy is essential to realize the full potential and widespread adoption of CO capture technologies, including different engineering aspects.

View Article and Find Full Text PDF

Efficient hydrogen storage is essential for its use as a sustainable energy carrier. Diatomaceous earth, a high-surface-area siliceous geomaterial, shows potential as a physisorption material for hydrogen storage. This study analyzes diatomaceous earth's long-term characteristics when subjected to high-pressure hydrogen injection.

View Article and Find Full Text PDF

In this study, we employed a rapid and efficient microwave method to synthesize Metal-Organic Framework (MOF-303), which was subsequently embedded onto Palladium/Carbon (Pd/C) electrodes. The resulting hybrid material, Pd/C@MOF-303, was thoroughly characterized, and its performance in the Hydrogen Evolution Reaction (HER) was systematically investigated. The Pd/C@MOF-303 composite exhibited remarkable improvements in HER performance compared to the unmodified Pd/C electrode.

View Article and Find Full Text PDF

CO capture is a useful strategy for controlling the risks associated with global warming. The design of an adsorbent is essential for clean and potentially energy-efficient adsorption-based carbon capture processes. This study reports a facile and moderately temperature single-stage combined pyrolysis and activation strategy for the synthesis of nitrogen-doped carbons for high-performance CO capture.

View Article and Find Full Text PDF

In this article, newly designed 3D porous polymers with tuned porosity were synthesized by the polycondensation of tetrakis (4-aminophenyl) methane with pyrrole to form polymer and with phenazine to form polymer. The polymerization reaction used -formaldehyde as a linker and nitric acid as a catalyst. The newly designed 3D porous polymers showed permanent porosity with a BET surface area of 575 m/g for and 389 m/g for .

View Article and Find Full Text PDF

CO capture is a practical approach to mitigating the impacts of global warming. Adsorption-based carbon capture is a clean and potentially energy-efficient method whose performance greatly depends on adsorbent design. In this study, we explored the use of jute-derived carbon as a high-performance adsorbent for CO capture.

View Article and Find Full Text PDF

The design of novel porous solid sorbents for carbon dioxide capture is critical in developing carbon capture and storage technology (CCS). We have synthesized a series of nitrogen-rich porous organic polymers (POPs) from crosslinking melamine and pyrrole monomers. The final polymer's nitrogen content was tuned by varying the melamine ratio compared to pyrrole.

View Article and Find Full Text PDF

A catalytic system for selective transformation of furfural into biofuel is highly desirable. However, selective hydrogenation of the C=O group over the furan ring of furfural to produce ether in one step is challenging. Here, we report the preparation of a series of magnetically recoverable FeCo@GC nano-alloys (37-40 nm).

View Article and Find Full Text PDF

The separation of oil/water emulsions has attracted considerable attention for decades due to the negative environmental impacts brought by wastewater. Among the various membranes investigated for separation, polyvinylidene fluoride (PVDF) membranes have shown significant advantages of ease of fabrication, high selectivity, and fair pore distribution. However, PVDF membranes are hydrophobic and suffer from severe fouling resulting in substantial flux decline.

View Article and Find Full Text PDF

The facile and environmentally friendly synthesis of porous organic polymers with designed polar functionalities decorating the interior frameworks as an excellent adsorbent for selective carbon dioxide capture and metal ion removal is a target worth pursuing for environmental applications. In this regard, two azo-linked porous organic polymers denoted man-Azo-P1 and man-Azo-P2 were synthesized in water by the azo-linking of 4,4'-diaminobiphenyl (benzidine) and 4,4'-methylenedianiline, respectively, with 1,3,5-trihydroxybenzene. The resulting polymers showed good BET surface areas of 290 and 78 m g for man-Azo-P1 and man-Azo-P2, respectively.

View Article and Find Full Text PDF

The continuous carbon dioxide (CO ) gas emissions associated with fossil fuel production, valorization, and utilization are serious challenges to the global environment. Therefore, several developments of CO capture, separation, transportation, storage, and valorization have been explored. Consequently, we documented a comprehensive review of the most advanced strategies adopted in metal-organic frameworks (MOFs) for CO capture and separation.

View Article and Find Full Text PDF

Among thousands of known metal-organic frameworks (MOFs), the University of Oslo's MOF (UiO-66) exhibits unique structure topology, chemical and thermal stability, and intriguing tunable properties, that have gained incredible research interest. This paper summarizes the structural advancement of UiO-66 and its role in CO capture, separation, and transformation into chemicals. The first part of the review summarizes the fast-growing literature related to the CO capture reported by UiO-66 during the past ten years.

View Article and Find Full Text PDF

Natural gas sweetening currently requires multistep, complex separation processes to remove the acid gas contaminants, carbon dioxide and hydrogen sulfide. In addition to being widely recognized as energy inefficient and cost-intensive, the effectiveness of this conventional process also suffers considerably because of limitations of the sorbent materials it employs. Herein, we report a new porous organic polymer, termed KFUPM-5, that is demonstrated to be effective in the concurrent separation of both hydrogen sulfide and carbon dioxide from a mixed gas stream at ambient conditions.

View Article and Find Full Text PDF