Publications by authors named "Mahmoud Gharbavi"

Sox2 and Oct4 dysregulations could significantly increase in the cancer stem cell (CSC) population in some cancer cells and resistance to common treatments. In this study, the synergistic effects of Sox2-Oct4 decoy oligodeoxynucleotides-encapsulated Niosomes-zinc hybrid nanocarriers along with X-irradiation conditions as a combinational therapy tool were investigated in the treatment of cancer-like stem cells (NTERA-2). The NTERA-2 cell line known as a cancer-like stem cell line was used in this investigation.

View Article and Find Full Text PDF

Radiation therapy and phototherapy are commonly used cancer treatments that offer advantages such as a low risk of adverse effects and the ability to target cancer cells while sparing healthy tissue. A promising strategy for cancer treatment involves using nanoparticles (NPs) in combination with radiation and photothermal therapy to target cancer cells and improve treatment efficacy. The synthesis of gold NPs (AuNPs) for use in biomedical applications has traditionally involved toxic reducing agents.

View Article and Find Full Text PDF

The main treatment modalities for breast cancer include surgery, chemotherapy, and radiotherapy, and each treatment will bring different side effects. Design and synthesizing a novel nanostructure for chemo-radiotherapy has been proposed as an effective method in consideration to enhance the drug efficiency as well as improve the effect of radiotherapy. This study aimed to synthesize zinc nanoparticles (ZnNPs) coated with alginate conjugated with Doxorubicin (Dox) drug and investigate its effects along with X-irradiation on MDA-MB-231 triple-negative breast cancer cell line.

View Article and Find Full Text PDF

Background: An increase in cancer stem cell (CSC) populations and their resistance to common treatments could be a result of c-Myc dysregulations in certain cancer cells. In the current study, we investigated anticancer effects of c-Myc decoy ODNs loaded-poly (methacrylic acid-co-diallyl dimethyl ammonium chloride) (PMA-DDA)-coated silica nanoparticles as carriers on cancer-like stem cells (NTERA-2).

Methods And Results: The physicochemical characteristics of the synthesized nanocomposites (SiO@PMA-DDA-DEC) were analyzed using FT-IR, DLS, and SEM techniques.

View Article and Find Full Text PDF

In the present study, we investigated the synergistic effects of targeted methotrexate-selenium nanostructure containing Myc decoy oligodeoxynucleotides along with X-irradiation exposure as a combination therapy on LNCaP prostate cancer cells. Myc decoy ODNs were designed based on the promoter of gene and analyzed by molecular docking and molecular dynamics assays. ODNs were loaded on the synthesized Se@BSA@Chi-MTX nanostructure.

View Article and Find Full Text PDF

The Myc gene is the essential oncogene in triple-negative breast cancer (TNBC). This study investigates the synergistic effects of combining Myc decoy oligodeoxynucleotides-encapsulated niosomes-selenium hybrid nanocarriers with X-irradiation exposure on the MDA-MB-468 cell line. Decoy and scramble ODNs for Myc transcription factor were designed and synthesized based on promoter sequences of the gene.

View Article and Find Full Text PDF

Biogenic synthesis of selenium nanoparticles (SeNPs) using plant extracts has emerged as a promising alternative approach to traditional chemical synthesis. The current study aims to introduce a safe, low-cost, and green synthesis of SeNPs using fresh fruit extract of Vaccinium arctostaphylos L. The biogenic synthesis of SeNPs was confirmed by different analyses including ultraviolet-visible spectrophotometry, Fourier transform infrared, and energy-dispersive X-ray.

View Article and Find Full Text PDF

Stroke is the most common reason for adult disabilities and the second ground for death worldwide. Our previous study revealed that selegiline serves as an alternative candidate in transient hypoxia-ischemia. However, aggressive and restless behavior was observed in stroke-induced rats receiving 4 mg/kg selegiline.

View Article and Find Full Text PDF

The aim of the present investigation was to develop niosomes containing both curcumin (CUR) and methotrexate (MTX). Also, the combinational effect of CUR and MTX in both free and niosomal forms on growth inhibition potential and induction of apoptosis in the HCT-116 cell line were exploited. Niosomes were prepared by the thin-film hydration method and their physicochemical properties were determined by various techniques.

View Article and Find Full Text PDF

Glioblastoma multiform is the most common of primary malignant brain tumors in adults. Currently, surgical resection of the tumor mass, followed by adjuvant radiotherapy and chemotherapy are standard treatments for glioblastoma multiform but so far are not effective treatments. Thus, the development of a vaccine, as a safe and efficient strategy for prophylactic or therapeutic purposes against glioblastoma multiform is very necessary.

View Article and Find Full Text PDF

Recently, advances in the synthesis and development of multifunctional nanoparticle platforms have opened up great opportunities and advantages for specifically targeted delivery of genes of interest. BSA-coated niosome structures (NISM@B) can potentially improve the efficiency delivery of nucleic acid molecules and the transfection of genes. Few studies have reported the combined use of niosomes with nucleic acid as therapeutic agents or decoy oligodeoxynucleotides (ODNs).

View Article and Find Full Text PDF

In the present study, we introduced cholesterol (CLO)-conjugated bovine serum albumin nanoparticles (BSA NPs) as a new system for indirect targeting drug delivery. Tamoxifen, as an anticancer drug, was loaded on BSA NPs (BSA-TAX NPs); CLO was then conjugated to the BSA-TAX NPs surface for the targeted delivery of NPs system, by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxy succinimide carbodiimide chemistry (CLO-BSA-TAX NPs). The physicochemical properties, toxicity, in vitro, and in vivo biocompatibility of the BSA NPs system were characterized on cancer cell lines (4T1).

View Article and Find Full Text PDF

The current study intends to investigate a novel drug delivery system (DDS) based on niosomes structure (NISM) and bovine serum albumin (BSA) which was formulated to BSA coated NISM (NISM-B). Also, selenium nanoparticles (SeNPs) have been prepared by BSA mediated biosynthesis. Finally, the NISM-B was hybridized with SeNPs and was formulated as NISM-B@SeNPs for drug delivery applications.

View Article and Find Full Text PDF

In recent years, mesenchymal stem cells (MSCs) as a new tool for therapeutic gene delivery in clinics have attracted much attention. Their advantages cover longer lifespan, better isolation, and higher transfection efficiency and proliferation rate. MSCs are the preferred approach for cell-based therapies because of their in vitro self-renewal capacity, migrating especially to tumor tissues, as well as anti-inflammatory and immunomodulatory properties.

View Article and Find Full Text PDF

Selegiline (L-deprenyl) is the major drug which is used in the treatment of Parkinson's disease because of its neurotrophic and antiapoptotic properties. Previous studies suggested that low dose of L-methamphetamine (L-METH) caused lower mortality rate in patients with severe traumatic brain injury. As L-methamphetamine is one of the metabolites of selegiline, the present study aims to examine whether L-deprenyl can improve cognitive, biochemical, and histopathological injury in animal model of transient global ischemia.

View Article and Find Full Text PDF

The present study aims to: (a) design the versatile microemulsions (MEs) system for drug delivery; (b) use the bovine serum albumin nanoparticles for MEs system development; (c) characterize the physicochemical properties, cytotoxicity, and biocompatibility of the modified MEs (MMEs) system; (d) load of paclitaxel (PTX) and folate conjugate of MEs system; and (e) assess the potential of anticancer activity of MEs system. The physicochemical possessions, in vitro and in vivo cytotoxicity, and stability of MMEs system were characterized. The results of our study show that the MEs system was stable, having narrow particle size distribution, nontoxic, biocompatible, and not active for leukocyte proliferation.

View Article and Find Full Text PDF

The present study aimed to synthesize triacetin-microemulsion (T-ME) and T-ME hybridized with bovine serum albumin nanoparticles (T-BSA-ME) having narrow particle size distribution and versatile carrier systems as a novel microemulsion system. The suggested ME system was characterized by Fourier Transform Infrared spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), and Atomic Force Microscopy (AFM). The physicochemical properties of microemulsion system including particle size, PDI and ζ-potential, refractive index, Conductivity, %Transmittance, pH, and rheological behavior were also evaluated.

View Article and Find Full Text PDF

Niosomes (the nonionic surfactant vesicles), considered as novel drug delivery systems, can improve the solubility and stability of natural pharmaceutical molecules. They are established to provide targeting and controlled release of natural pharmaceutical compounds. Many factors can influence on niosome construction such as the preparation method, type and amount of surfactant, drug entrapment, temperature of lipids hydration, and the packing factor.

View Article and Find Full Text PDF