Publications by authors named "Mahmoud Amouzadeh Tabrizi"

Article Synopsis
  • Cell-generated forces play a crucial role in various cellular processes, and measuring these forces is essential for understanding cell behavior in contexts like migration and cancer development, although existing methods are often complex and require specialized skills.
  • A new smartphone-based electrochemical sensor has been developed, utilizing a DNA-based force probe that can detect cellular forces, enabling the measurement of small forces generated by just a few cells, like HeLa cells, through enhanced electrochemical signals.
  • This innovative sensor is portable, cost-effective, and user-friendly, making it a promising complementary tool to existing techniques for detecting cellular forces in biological research.
View Article and Find Full Text PDF

Cell-generated forces are a key player in cell biology, especially during cellular shape formation, migration, cancer development, and immune response. A new type of label-free smartphone-based electrochemical DNA sensor is developed here for cellular force measurement. When cells apply tension forces to the DNA sensors, the rapid rupture of DNA duplexes allows multiple redox reporters to reach the electrode and generate highly sensitive electrochemical signals.

View Article and Find Full Text PDF

Mechanical forces play an important role in cellular communication and signaling. We developed in this study novel electrochemical DNA-based force sensors for measuring cell-generated adhesion forces. Two types of DNA probes, i.

View Article and Find Full Text PDF

Herein, a simple method has been used in the fabrication of a microneedle electrode (MNE). To do this, firstly, a commercial self-dissolving microneedle patch has been used to make a hard-polydimethylsiloxane-based micro-pore mold (MPM). Then, the pores of the MPM were filled with the conductive platinum (Pt) paste and cured in an oven.

View Article and Find Full Text PDF

Coronavirus disease 2019 is one of the global health problems. Herein, a highly sensitive electrochemical biosensor has been designed to detect the RNA-dependent RNA polymerase (RdRP) of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) (SARS-CoV-2 RdRP). Herein, the surface-initiated reversible-addition-fragmentation-chain-transfer polymerization was used to amplify the electrochemical signal.

View Article and Find Full Text PDF

Procalcitonin (PCT) is considered a sepsis and infection biomarker. Herein, an interdigitated electrochemical immunosensor for the determination of PCT has been developed. The interdigitated electrode was made of the laser-engraved graphene electrode decorated with gold (LEGE/Au).

View Article and Find Full Text PDF

Herein, an aptasensor was designed to detect the receptor-binding domain of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2-RBD) based on the encapsulation of the methylene blue (MB) inside the mesoporous silica film (MPSF), and an aptamer as an electrochemical probe, a porous matrix, and a bio-gatekeeper, respectively. The signal analysis of the proposed aptasensor indicated that the surface coverage of the encapsulated MB inside the MPSF (MB@MPSF) was 1.9 nmol/cm.

View Article and Find Full Text PDF

Herein, we report an electrochemical membrane-based aptasensor for the determination of the SARS-CoV-2 receptor-binding domain (SARS-CoV-2-RBD). For this purpose, the nanoporous anodic aluminium oxide membrane (NPAOM) was first fabricated electrochemically. The NPAOM was then functionalized with 3-mercaptopropyl trimethoxysilane (NPAOM-Si-SH).

View Article and Find Full Text PDF

Worldwide, human health is affected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hence, the fabrication of the biosensors to diagnose SARS-CoV-2 is critical. In this paper, we report an electrochemical impedance spectroscopy (EIS)-based aptasensor for the determination of the SARS-CoV-2 receptor-binding domain (SARS-CoV-2-RBD).

View Article and Find Full Text PDF

C-reactive protein (CRP) is one of the biomarkers related to coronavirus disease 2019 (COVID-19). Therefore, it is crucial to develop a highly sensitive, selective, and cost-effective biosensor for the determination of CRP. In this study, we designed an electrochemical aptasensor.

View Article and Find Full Text PDF

Herein, a novel molecularly imprinted polymer (MIP) based electrochemical sensor for the determination of the receptor-binding domain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2-RBD) has been developed. For this purpose, first, a macroporous gold screen-printed electrode (MP-Au-SPE) has been fabricated. The MIP was then synthesized on the surface of the MP-Au-SPE through the electro-polymerization of ortho-phenylenediamine in the presence of SARS-CoV-2-RBD molecules as matrix polymer, and template molecules, respectively.

View Article and Find Full Text PDF

Herein, a photoelectrochemical aptasensor for the quantitive measurement of the severe acute respiratory syndrome coronavirus-2 receptor-binding domain (Sars-Cov-2 RBD) has been reported for the first time. For this purpose, first, graphitic carbon nitride and (gCN) and cadmium sulfide (CdS) quantum dots were fabricated and characterized. After that, gCN and CdS were mixed well.

View Article and Find Full Text PDF

Recently, there has been a growing demand to develop portable devices for the fast detection of contaminants in food safety, healthcare, and environmental fields. Herein, two biosensing methods were designed by the use of nicotinamide adenine dinucleotide phosphate (NAD(P)H)-dependent TetX2 enzyme activity and thionine as an excellent electrochemical and colorimetric mediator/probe to monitor tetracycline (TC) in milk. The nanoporous glassy carbon electrode (NPGCE) modified with polythionine was first prepared by electrochemically and then TetX2 was immobilized onto the NPGCE using polyethyleneimine.

View Article and Find Full Text PDF

This review paper focuses on recent progress in optical biosensors using self-ordered nanoporous anodic alumina. We present the fabrication of self-ordered nanoporous anodic alumina, surface functionalization, and optical sensor applications. We show that self-ordered nanoporous anodic alumina has good potential for use in the fabrication of antibody-based (immunosensor), aptamer-based (aptasensor), gene-based (genosensor), peptide-based, and enzyme-based optical biosensors.

View Article and Find Full Text PDF

An interferometric reflectance spectroscopy-based biosensor for the determination of cathepsin B (Cat B) as a cancer-related enzyme has been fabricated. For this purpose, the nanoporous anodic alumina (NAA) was fabricated electrochemically. The NAA was then modified with the amino-silane coupling agent.

View Article and Find Full Text PDF

The determination of trypsin in the human real sample is a routine medical investigation to assess the pancreatic disease. Herein, we fabricated an interferometric reflectance spectroscopy based biosensor for the determination trypsin. For this purpose, urease and fluorescein 5(6)-isothiocyanate (FLITC) were immobilized on the nanoporous anodic alumina (NAA).

View Article and Find Full Text PDF

In this study, a simple and cost-effective electrochemical DNA biosensor was developed for sensitive detection of mycobacterium tuberculosis (TB). Nanocomposite of zinc oxide (ZnO) and gold nanoparticles (AuNPs) was used as a platform for immobilizing thiolated TB DNA (probe DNA). ZnO was electrodeposited on a glassy carbon electrode by potentiostat electrolysis of Zn (NO) solution at -1.

View Article and Find Full Text PDF

The determination of cytochrome c in the human serum sample is a regular medical investigation performed to assess cancer diseases. Herein, we used interferometric reflectance spectroscopy (IRS) based biosensor for the determination of cytochrome c. For this purpose first, the nanoporous anodic alumina (NAA) was fabricated.

View Article and Find Full Text PDF

In this work, an electrochemical aptasensor was developed for sensitive detection of MUC1 based on metal-organic framework-reduced graphene oxide nanocomposite (Cu-MOF-RGO). Cu- MOF-RGO appeared to be suitable as a platform for immobilization of MUC1 aptamer, and also as an electrochemical probe, which exhibited well-defined peaks with good stability and reproducibility. Cu-MOF-graphene oxide (Cu-MOF-GO) nanocomposite was prepared and cast on the electrode surface, then in order to increase the conductivity of the electrode, GO was electrochemically reduced to RGO.

View Article and Find Full Text PDF

It is well known that Alzheimer's disease is one of the global challenges for the 21st century. Therefore, it is urgent to develop a reliable biosensor for the detection of this disease. Here in, we have developed for the first time, an aptasensor based on interferometric reflectance spectroscopy (IRS) for the determination of amyloid β (Aβ) oligomers that is an Alzheimer's disease biomarker.

View Article and Find Full Text PDF

A sandwich-type photoelectrochemical immunoassay is described for the protein S100ß which is an Alzheimer's disease biomarker found in the astrocytes of the brain. Antibody against S100ß (anti-S100ß) was labeled with CdS quantum dots and then acted as a secondary antibody. The labeled antibody was characterized by FTIR, ultraviolet-visible and fluorescence spectroscopy.

View Article and Find Full Text PDF

Herein, aptamer-modified self-propelled nanomotors were used for transportation of human promyelocytic leukemia cells (HL-60) from a human serum sample. For this purpose, the fabricated manganese oxide nanosheets-polyethyleneimine decorated with nickel/gold nanoparticles (MnO-PEI/Ni/Au) as nanomotors were added to a vial containing thiolated aptamer KH1C12 solution as a capture aptamer to attach to the gold nanoparticles on the surface of nanomotors covalently. The aptamer-modified self-propelled nanomotors (aptamer/nanomotors) were then separated by placing the vial in a magnetic stand.

View Article and Find Full Text PDF

The authors describe an electrochemical method for aptamer-based determination of insulin at femtomolar concentrations. The surface of a screen printed electrode was modified with ordered mesoporous carbon that was chemically modified with 1,3,6,8-pyrenetetrasulfonate (TPS). The amino-terminated aptamer was then covalently linked to TPS via reactive sulfonyl chloride groups.

View Article and Find Full Text PDF