Publications by authors named "Mahmoud Al-Salihi"

Article Synopsis
  • The study presents a new data acquisition method that uses three adjustable gates to improve the resolution of rapid lifetime imaging in upconversion photoluminescence, addressing limitations of existing techniques.
  • This method allows for the visualization of capillary networks and pH mapping in mouse brain vasculature by utilizing enhanced brightness from specific nanoparticles.
  • Results show a high accuracy in fluorescence duration measurements, making it a fast and effective solution for multiplex brain imaging compared to traditional methods.
View Article and Find Full Text PDF

In biological research, rapid wide-field fluorescence lifetime imaging has become an important imaging tool. However, the biological samples with weak fluorescence signals and lower sensitivity often suffer from very low precision in lifetime determinations which restricts its widespread utilization in many bioimaging applications. To address this issue, a method is presented in this paper to substantially enhance the precision of rapid lifetime determination (RLD).

View Article and Find Full Text PDF

Flexible organic materials that exhibit dynamic ultralong room temperature phosphorescence (DURTP) via photoactivation have attracted increasing research interest for their fascinating functions of reversibly writing-reading-erasing graphic information in the form of a long afterglow. However, due to the existence of a nonnegligible activation threshold for the initial exposure dose, the display mode of these materials has thus far been limited to binary patterns. By resorting to halogen element doping of carbon dots (CDs) to enhance intersystem crossing and reduce the activation threshold, we were able to produce, for the first time, a transparent, flexible, and fully programmable DURTP composite film with a reliable grayscale display capacity.

View Article and Find Full Text PDF

In this paper, we present a method to distinguish neoplastic tissues from non-neoplastic ones using calibration-free laser-induced breakdown spectroscopy (CF-LIBS). For this propose, plasma emission was collected from neoplastic and non-neoplastic tissues taken from the ovarian cancer mice models. Results were obtained by utilizing the characteristic plasma emission lines of different elements that have been confirmed in the investigated samples.

View Article and Find Full Text PDF