Rice contamination with neurotoxic methylmercury (MeHg) from paddy soils is an escalating global concern. Identifying the microorganisms responsible for mercury (Hg) methylation in these soils is essential for controlling Hg contamination in the food chain and mitigating health impacts. Current research often focuses on total Hg-methylating microorganisms, overlooking the contributions of active ones, which can lead to either overestimating or neglecting the specific roles of microorganisms in Hg methylation within paddy soils.
View Article and Find Full Text PDFMethylmercury (MeHg) is a microbially produced neurotoxin derived from inorganic mercury (Hg), which accumulation in rice represents a major health concern to humans. However, the microbial control of MeHg dynamics in the environment remains elusive. Here, leveraging three rice paddy fields with distinct concentrations of Hg (Total Hg (THg): 0.
View Article and Find Full Text PDFRice paddies provide optimum conditions for Hg methylation, and paddy soil is a hot spot for Hg methylation and the predominant source of methylmercury (MeHg) accumulated in rice grains. The role of dissolved organic matter (DOM) in controlling Hg bioavailability and methylation in rice paddy systems remains unclear. Paddy soils from eight various cultivation sites in China were chosen to investigate the variations in soil DOM and the influence of DOM concentration and optical characteristics on Hg methylation in rice paddy systems.
View Article and Find Full Text PDFSoil microbial communities are critical for maintaining terrestrial ecosystems and fundamental ecological processes. Mercury (Hg) is a heavy metal that is toxic to microorganisms, but its effects on microbial community assembly and ecosystem multifunctionality in rice paddy ecosystems remain largely unknown. In the current study, we analyzed the microbial community structure and ecosystem multifunctionality of paddy soils across a Hg contamination gradient.
View Article and Find Full Text PDFThe newly deposited mercury (Hg) is more readily methylated to methylmercury (MeHg) than native Hg in paddy soil. However, the biogeochemical processes of the newly deposited Hg in soil are still unknown. Here, a field experimental plot together with a stable Hg isotope tracing technique was used to demonstrate the geochemical fractionation (partitioning and redistribution) of the newly deposited Hg in paddy soils during the rice-growing period.
View Article and Find Full Text PDFRice, as a dominant crop in China and Asia, can be a major route of methylmercury (MeHg) exposure for humans in inland China, especially in those living in mercury (Hg) polluted areas. Soil is the most prominent MeHg accumulation source for rice grains. The development of management practices to reduce MeHg in rice grains is crucial.
View Article and Find Full Text PDFMercury (Hg) accumulation in rice is an emerging health concern worldwide. However, sources and interactions responsible for Hg species accumulation in different rice tissues are still uncertain. Four experimental plots were carefully designed at an artisanal Hg mining site and a control site to evaluate the effect of atmospheric and soil Hg contents on Hg accumulation in rice.
View Article and Find Full Text PDFGroundwater represents the primary source of freshwater for more than 35% of world people, and its contamination became a worldwide challenge. Egypt is suffering from water quantity and quality, especially in desert areas. El Obour city and environs Northeast Cairo face waterlogging owing to the elevated-shallow groundwater table.
View Article and Find Full Text PDFThe River Nile is the primary source of freshwater for drinking, irrigation, and industrial purposes in Egypt. Thus, the water quality in this river concerns the health of local inhabitants. The present study reveals seasonal variations of various physicochemical and heavy metals parameters and microbial load of water at 15 sites from Qena to Sohag cities, Egypt.
View Article and Find Full Text PDF