Publications by authors named "Mahmoud A Abdalla"

Carbon dioxide (CO) adsorption on solid sorbents represents a promising technology for separating carbon from different sources and mitigating anthropogenic emissions. The complete integration of carbon capture technologies in various industrial sectors will be crucial for a sustainable, low-carbon future. Despite developing new sorbents, a comprehensive strategy is essential to realize the full potential and widespread adoption of CO capture technologies, including different engineering aspects.

View Article and Find Full Text PDF

Background: The current hepatocellular carcinoma (HCC) diagnostic approaches lack adequate sensitivity and specificity. So, this study was performed to develop an innovative model of surface-enhanced Raman spectroscopy (SERS) that can detect HCC patients by identifying the circulating tumor-derived exosomes.

Methodology: Sixty participants, including normal controls, hepatitis C virus (HCV)-infected patients, and HCV-associated HCC patients, had their whole blood samples and exosomes separated from these samples analyzed using Raman spectroscopy (RS).

View Article and Find Full Text PDF

The facile and environmentally friendly synthesis of porous organic polymers with designed polar functionalities decorating the interior frameworks as an excellent adsorbent for selective carbon dioxide capture and metal ion removal is a target worth pursuing for environmental applications. In this regard, two azo-linked porous organic polymers denoted man-Azo-P1 and man-Azo-P2 were synthesized in water by the azo-linking of 4,4'-diaminobiphenyl (benzidine) and 4,4'-methylenedianiline, respectively, with 1,3,5-trihydroxybenzene. The resulting polymers showed good BET surface areas of 290 and 78 m g for man-Azo-P1 and man-Azo-P2, respectively.

View Article and Find Full Text PDF