Publications by authors named "Mahmood S Mozaffari"

Introduction: Human papillomavirus virus-related oropharyngeal squamous cell carcinoma (HPV-OPSCC) comprises a significant portion of head and neck cancers. Several glucocorticoid-inducible proteins play important roles in pathogenesis of some cancers but their status and roles in HPV-OPSCC remain elusive; these include the glucocorticoid-induced leucine zipper (GILZ), Annexin-A1 and serum glucocorticoid-regulated kinase-1 (SGK-1).

Methods: We determined expression profiles of these proteins, using immunohistochemistry, in archived biopsy samples of patients diagnosed with HPV-OPSCC; samples of non-cancer oral lesions (e.

View Article and Find Full Text PDF

The family of serum-glucocorticoid-regulated kinase (SGK) consists of three paralogs, SGK-1, SGK-2, and SGK-3, with SGK-1 being the better studied. Indeed, recognition of the role of SGK-1 in regulation of cell survival and proliferation has led to introduction of a number of small-molecule inhibitors for some types of cancer. In addition, SGK-1 regulates major physiologic effects, such as renal solute transport, and contributes to the pathogenesis of non-neoplastic conditions involving major organs including the heart and the kidney.

View Article and Find Full Text PDF

Re-osseointegration of an infected/contaminated dental implant poses major clinical challenges. We tested the hypothesis that the application of an antibiotic-releasing construct, combined with hard/soft tissue replacement, increases the efficacy of reconstructive therapy. We initially fabricated semi-flexible hybrid constructs of β-TCP/PHBHHx, with tetracycline (TC) (TC amounts: 5%, 10%, and 15%).

View Article and Find Full Text PDF

Adrenal glands are the major source of glucocorticoids, but recent studies indicate tissue-specific production of cortisol, including that in the oral mucosa. Both endogenous and exogenous glucocorticoids regulate the production of several proteins, including the glucocorticoid-induced leucine zipper (GILZ) and Annexin A1, which play important roles in the regulation of immune and inflammatory responses. Common inflammation-associated oral conditions include lichen planus and candidiasis, but the status of GILZ and Annexin A1 in these human conditions remains to be established.

View Article and Find Full Text PDF

Glucocorticoid-induced leucine zipper and serum-glucocorticoid-regulated kinase-1 (SGK-1) are major glucocorticoid-inducible proteins. Recent studies indicate the local production of cortisol in oral mucosa, which can impact the tissue generation of glucocorticoid-induced leucine zipper (GILZ) and SGK-1. Furthermore, GILZ and SGK-1 play pathogenic roles in a variety of cancers, but their status in potentially malignant (e.

View Article and Find Full Text PDF

Renal and cardiovascular disorders are very prevalent and associated with significant morbidity and mortality. Among diverse pathogenic mechanisms, the dysregulation of immune and inflammatory responses plays an essential role in such disorders. Consequently, the discovery of Annexin A1, as a glucocorticoid-inducible anti-inflammatory protein, has fueled investigation of its role in renal and cardiovascular pathologies.

View Article and Find Full Text PDF

Glucocorticoids are extensively used for a variety of conditions, including those associated with dysregulation of immune and inflammatory responses as primary etiopathogenic factors. Indeed, the proinflammatory cytokine storm of coronavirus disease 2019 (COVID-19) is the latest condition for which the use of a glucocorticoid has been advocated. Recognition of serious adverse effects of glucocorticoids has led to research aimed at unraveling molecular basis by which they impact immune and inflammatory events with the ultimate objective of devising novel therapies to circumvent glucocorticoids-related adverse outcomes.

View Article and Find Full Text PDF

Innate lymphoid cells (ILCs) have emerged as largely tissue-resident archetypal cells of the immune system. We tested the hypotheses that renal ischemia-reperfusion injury (IRI) is a contributing factor to polarization of ILCs and that glucocorticoid-induced leucine zipper (GILZ) and cannabidiol regulate them in this condition. Mice subjected to unilateral renal IRI were treated with the following agents before restoration of renal blood flow: cannabidiol, DMSO, transactivator of transcription- (TAT-) GILZ, or the TAT peptide.

View Article and Find Full Text PDF

Over the last several decades, a wealth of information has become available regarding various sources of stem cells and their potential use for regenerative purposes. Given the intense debate regarding embryonic stem cells, much of the focus has centered around application of adult stem cells for regenerative engineering along with other relevant aspects including use of growth factors and scaffolding materials. The more recent discovery of tooth-derived stem cells has sparked much interest in their application to regenerative dentistry to treat and alleviate the most prevalent oral diseases-i.

View Article and Find Full Text PDF

The glucocorticoid-induced leucine zipper (GILZ) mediates anti-inflammatory effects of glucocorticoids. Acute kidney injury (AKI) mobilizes immune/inflammatory mechanisms, causing tissue injury, but the impact of GILZ in AKI is not known. Neutrophils play context-specific proinflammatory [type 1 neutrophil (N1)] and anti-inflammatory [type 2 neutrophil (N2)] functional roles.

View Article and Find Full Text PDF

Hallmark features of acute kidney injury (AKI) include mobilization of immune and inflammatory mechanisms culminating in tissue injury. Emerging information indicates heterogeneity of neutrophils with pro- and anti-inflammatory functions (N1 and N2, respectively). Also, regulatory T-17 (Treg17) cells curtail T helper 17 (Th-17)-mediated proinflammatory responses.

View Article and Find Full Text PDF

Innate lymphoid cells (ILCs) are master regulators of immune and inflammatory responses, but their own regulatory mechanisms and functional roles of their subtypes (i.e., ILC1s-ILC3s) remain largely unresolved.

View Article and Find Full Text PDF

Myocardial infarction (MI) is associated with intense immune and inflammatory responses which contribute to tissue injury. Increasing evidence indicates that the glucocorticoid-induced leucine zipper (GILZ) protein suppresses immune and inflammatory responses. However, the status of and the role of GILZ in MI are not known.

View Article and Find Full Text PDF

Background: Recruitment of stem cells to sites of tissue injury constitutes an important mechanism aimed at tissue repair and regeneration. However, it is not clear how the diabetic milieu affects the viability of endogenous stem cells. Thus, we tested the hypothesis that diabetes mellitus is associated with increased apoptosis which, in turn, contributes to reduction in stem cells and the manifestation of type 2 diabetic nephropathy.

View Article and Find Full Text PDF

In effort to stem the opioid epidemic, the authors of this editorial urge reforms for dental training by returning to the basics. This near abandonment of foundational sciences by stakeholders is at a high price: compromised patient safety and health.

View Article and Find Full Text PDF

The purpose of the present investigation was to assess the reactivity of porcine coronary arteries under in vitro conditions following their exposure to methyl methacrylate (MMA) and hydroxyethyl methacrylate (HEMA) monomers. Confirming previous studies using rat aortas, both MMA and HEMA induced acute/direct relaxation of coronary ring preparations, which was partly dependent on the endothelium. With prolonged tissue exposure, both monomers caused time- and concentration-dependent inhibition of receptor-mediated contraction of the vascular smooth muscle caused by prostaglandin F2∝ (PGF2∝), with HEMA causing more inhibition than MMA.

View Article and Find Full Text PDF

Background: We recently showed that an imbalance between the pro-inflammatory cytokine, interleukin (IL)-17, and the developmental endothelial locus-1 (Del-1) likely contributes to inflammation and salivary gland abnormalities in Sjögren's syndrome (SS). The glucocorticoid-induced leucine zipper (GILZ) protein is a pivotal player in mediating the anti-inflammatory effects of glucocorticoids. However, its status and role in salivary gland inflammation and dysfunction in SS are not established.

View Article and Find Full Text PDF

Purpose: Programmed Death-1 (PD-1) and its ligand, PD-L1, are regulators of immune/ inflammatory mechanisms. We explored the potential involvement of PD-1/PD-L1 pathway in the inflammatory response and tissue damage in cardiac injury models.

Experimental Design: Ischemic-reperfused and cryoinjured hearts were processed for flow cytometry and immunohistochemical studies for determination of cardiac PD-1 and PD-L1 in the context of assessment of the growth arrest- and DNA damage-inducible protein 153 (GADD153) which regulates both inflammation and cell death.

View Article and Find Full Text PDF

Ischemia-Reperfusion (IR) injury of limb remains a significant clinical problem causing secondary complications and restricting clinical recovery, despite rapid restoration of blood flow and successful surgery. In an attempt to further improve post ischemic tissue repair, we investigated the effect of a local administration of bone marrow derived stem cells (BMDSCs) in the presence or absence of immune-regulatory enzyme, IDO, in a murine model. A whole limb warm ischemia-reperfusion model was developed using IDO sufficient (WT) and deficient (KO) mice with C57/BL6 background.

View Article and Find Full Text PDF

Background: Systemic hypertension and the associated increased myocardial load/mechanical stress are common in patients with coronary heart disease. Thus, unraveling of mechanosensitive molecular mechanisms that determine cell fate in the setting of cardiac tissue injury is of scientific and clinical relevance. We tested the hypothesis that the prosurvival, mechanosensitive, serum glucocorticoid-regulated kinase-1 (SGK-1) is a pivotal determinant of pressure-related inflammatory response and cell fate in the ischemic-reperfused heart.

View Article and Find Full Text PDF

Coronary artery disease and associated ischemic heart disease are prevalent disorders worldwide. Further, systemic hypertension is common and markedly increases the risk for heart disease. A common denominator of systemic hypertension of various etiologies is increased myocardial load/mechanical stress.

View Article and Find Full Text PDF

Endoplasmic reticulum (ER) stress response is a pivotal regulator of inflammation and cell death. An integral component of ER stress-induced apoptosis is expression of growth arrest- and DNA damage-inducible protein 153 (GADD153). Further, ER stress response is implicated in leukocyte adhesion and recent studies have discovered endogenous inhibitors of leukocyte adhesion including the developmental endothelial locus-1 (Del-1).

View Article and Find Full Text PDF

We tested the hypotheses that a) type 2 diabetes increases endoplasmic reticulum (ER) stress response, production of pro-inflammatory cytokines and kidney cell death and b) downregulations of renal indoleamine 2,3-dioxygenase (IDO) and programmed death-1 (PD-1) contribute to exacerbated inflammation and tissue injury. The growth arrest and DNA damage-inducible protein 153 (GADD153; a marker of ER stress response), inflammatory cytokines and cell death were determined in the context of assessment of IDO and PD-1 in an animal model of type 2 diabetic nephropathy (i.e.

View Article and Find Full Text PDF