This paper considers the problem of locating ground vehicles using their acoustic signatures recorded by unattended passive acoustic sensors. Acoustic signatures of the ground sources captured by different sensors within a cluster are used to generate direction of arrival (DoA) of the propagating wavefronts. Using the estimated DoAs of disparate distributed sensor node clusters, this paper introduced and compared several different existing target localization methods that provide the location and velocity estimates of a moving source.
View Article and Find Full Text PDFIn this study, the linear method of extended partial directed coherence (ePDC) was applied to establish the temporal dynamic behavior of cardiovascular and cardiorespiratory interactions during orthostatic stress at a 70° head-up tilt (HUT) test on young age-matched healthy subjects and patients with orthostatic intolerance (OI), both male and female. Twenty 5-min windows were used to analyze the minute-wise progression of interactions from 5 min in a supine position (baseline, BL) until 18 min of the orthostatic phase (OP) without including pre-syncopal phases. Gender differences in controls were present in cardiorespiratory interactions during OP without compromised autonomic regulation.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2014
Acoustic travel-time tomography of the atmosphere is a nonlinear inverse problem which attempts to reconstruct temperature and wind velocity fields in the atmospheric surface layer using the dependence of sound speed on temperature and wind velocity fields along the propagation path. This paper presents a statistical-based acoustic travel-time tomography algorithm based on dual state-parameter unscented Kalman filter (UKF) which is capable of reconstructing and tracking, in time, temperature, and wind velocity fields (state variables) as well as the dynamic model parameters within a specified investigation area. An adaptive 3-D spatial-temporal autoregressive model is used to capture the state evolution in the UKF.
View Article and Find Full Text PDFAn operationally adaptive (OA) system for prediction of acoustic transmission loss (TL) in the atmosphere is developed in this paper. This system uses expert neural network predictors, each corresponding to a specific range of source elevation. The outputs of the expert predictors are combined using a weighting mechanism and a nonlinear fusion system.
View Article and Find Full Text PDFThis paper presents an adaptable content-based image retrieval (CBIR) system developed using regularization theory, kernel-based machines, and Fisher information measure. The system consists of a retrieval subsystem that carries out similarity matching using image-dependant information, multiple mapping subsystems that adaptively modify the similarity measures, and a relevance feedback mechanism that incorporates user information. The adaptation process drives the retrieval error to zero in order to exactly meet either an existing multiclass classification model or the user high-level concepts using reference-model or relevance feedback learning, respectively.
View Article and Find Full Text PDFAn iterative learning algorithm for performing Multi-Channel Coherence Analysis (MCCA) is developed in this paper. MCCA is an extension of the well-known Canonical Correlation Analysis (CCA) that allows for more than two data channels to be analyzed. This paper discusses a standard method for performing MCCA and compares it to a newly developed data-driven and iterative approach.
View Article and Find Full Text PDFAn environmentally adaptive system for prediction of acoustic transmission loss (TL) in the atmosphere is developed in this paper. This system uses several back propagation neural network predictors, each corresponding to a specific environmental condition. The outputs of the expert predictors are combined using a fuzzy confidence measure and a nonlinear fusion system.
View Article and Find Full Text PDFIEEE Trans Neural Netw
March 2005
This paper presents a new multi-aspect pattern classification method using hidden Markov models (HMMs). Models are defined for each class, with the probability found by each model determining class membership. Each HMM model is enhanced by the use of a multilayer perception (MLP) network to generate emission probabilities.
View Article and Find Full Text PDFIEEE Trans Neural Netw
January 2004
Classification of underwater targets from the acoustic backscattered signals is considered here. Several different classification algorithms are tested and benchmarked not only for their performance but also to gain insight to the properties of the feature space. Results on a wideband 80-kHz acoustic backscattered data set collected for six different objects are presented in terms of the receiver operating characteristic (ROC) and robustness of the classifiers wrt reverberation.
View Article and Find Full Text PDFThis paper presents a new temporally adaptive classification system for multispectral images. A spatial-temporal adaptation mechanism is devised to account for the changes in the feature space as a result of environmental variations. Classification based upon spatial features is performed using Bayesian framework or probabilistic neural networks (PNNs) while the temporal updating takes place using a spatial-temporal predictor.
View Article and Find Full Text PDFA network structure for canonical coordinate decomposition is presented. The network consists of two single-layer linear subnetworks that together extract the canonical coordinates of two data channels. The connection weights of the networks are trained by a stochastic gradient descent learning algorithm.
View Article and Find Full Text PDF