Cyanine dyes constructed for NAD(P)H near-infrared sensing utilize extended π-conjugation but often exhibit delayed fluorescence responses to NAD(P)H due to reduced positive charge density in 3-quinolinium acceptors. This study introduces deep-red and near-infrared compact cyanine dyes represented by probes and for mitochondrial NAD(P)H detection in live cells. Probes and feature a unique structural design with a double bond connection linking 3-quinolinium to strategically positioned 1-methylquinolinium acceptor units at 2- and 4-positions, correspondingly.
View Article and Find Full Text PDFThis paper presents an analytical solution for fluid flow and heat transfer inside arbitrarily-shaped triangular ducts for the first time. The former analytical solutions are limited to the special case of isosceles triangular ducts. The literature has no report about the analytical solution for the general case of arbitrarily-shaped triangular ducts.
View Article and Find Full Text PDFThe multifaceted influence of combined variables on the mechanical-magnetorheological properties of isotropic and anisotropic MREs in a shear state is probed in this research. Specifically, the effects of preparation magnetic field, magnetic field intensity during rheometric testing, temperature, shear strain, angular frequency, and angle of structural matrix chains were examined. The viscoelastic properties of seven distinct MREs prepared in different pre-configuration settings were analysed by subjecting them to dynamic shear-rotational deformation at different temperatures and magnetic fields.
View Article and Find Full Text PDFClin Hemorheol Microcirc
November 2020
Cardiovascular disease is now under the influence of several factors that encourage researchers to investigate the flow of these vessels. Oscillation influences the blood circulation in the volume of red blood cells (RBC) strongly. Therefore, in this study, its effects have been considered on hemodynamic parameters in the elastic wall and coronary bifurcation.
View Article and Find Full Text PDFBiomech Model Mechanobiol
December 2018
In this study, a three-dimensional analysis of the non-Newtonian blood flow was carried out in the left coronary bifurcation. The Casson model and hyperelastic and rigid models were used as the constitutive equation for blood flow and vessel wall model, respectively. Physiological conditions were considered first normal and then compliant with hypertension disease with the aim of evaluating hemodynamic parameters and a better understanding of the onset and progression of atherosclerosis plaques in the coronary artery bifurcation.
View Article and Find Full Text PDFClin Hemorheol Microcirc
December 2016
In this article, a periodic developing blood flow in a capillary is simulated using a non-linear viscoelastic model for the first time. Here, the Giesekus model is used as the constitutive equation, and based on the experimental data, the best value for the mobility factor and zero shear rate viscosity are derived. The numerical solution of the problem is obtained using the finite volume method.
View Article and Find Full Text PDF