Background And Purpose: The global emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has prompted widespread concern. Bacteriophages have recently gained attention as a cost-effective and stable alternative for vaccine development due to their adjuvant properties. This study aimed to design and validate a poly epitope composed of viral proteins.
View Article and Find Full Text PDFAutophagy, the lysosome-driven breakdown of intracellular components, is pivotal in regulating eukaryotic cellular processes and maintaining homeostasis, making it physiologically important even under normal conditions. Cellular mechanisms involving autophagy include the response to nutrient deprivation, intracellular quality control, early development, and cell differentiation. Despite its established health significance, the role of autophagy in cancer and other diseases remains complex and not fully understood.
View Article and Find Full Text PDFBackground And Purpose: M13KO7, a modified M13 phage variant, carries the p15A replication origin and Tn903 kanamycin resistance gene. This study aimed to optimize M13KO7's replication by substituting the p15A origin with the higher-copy pMB1 origin (500-700 copy numbers).
Experimental Approach: A 6431-nucleotide fragment from the M13KO7 plasmid lacking the p15A replication origin and kanamycin resistance gene was amplified using a long polymerase chain reaction (PCR).
Introduction: Cholera is a severe gastrointestinal disease that manifests with rapid onset of diarrhea, vomiting, and high mortality rates. Due to its widespread occurrence in impoverished communities with poor water sanitation, there is an urgent demand for a cost-effective and highly efficient vaccine. Multi-epitope vaccines containing dominant immunological epitopes and adjuvant compounds have demonstrated potential in boosting the immune response.
View Article and Find Full Text PDFCNS Neurol Disord Drug Targets
December 2022
The blood-brain barrier (BBB) is considered an important protective barrier in the central nervous system (CNS). The barrier is mainly formed by endothelial cells (ECs) interconnected by various junctions such as tight junctions (TJs), gap junctions, and adherent junctions. They collectively constitute an intensive barrier to the transit of different substances into the brain, selectively permitting small molecules to pass through by passive movement but holding off large ones such as peptides and proteins to cross the brain.
View Article and Find Full Text PDF